Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications
Corresponding Author
Dr. Syed Farooq Adil
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorMuhammad Ashraf
Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mujeeb Khan
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mohamed E. Assal
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mohammed Rafi Shaik
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mufsir Kuniyil
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Abdulrahman Al-Warthan
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Mohammed Rafiq H. Siddiqui
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Wolfgang Tremel
Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Dr. Muhammad Nawaz Tahir
Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261 Kingdom of Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Syed Farooq Adil
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorMuhammad Ashraf
Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mujeeb Khan
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mohamed E. Assal
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mohammed Rafi Shaik
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorDr. Mufsir Kuniyil
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Abdulrahman Al-Warthan
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorProf. Mohammed Rafiq H. Siddiqui
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Wolfgang Tremel
Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Dr. Muhammad Nawaz Tahir
Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261 Kingdom of Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAbstract
Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aC. N. Satterfield, Heterogeneous catalysis in industrial practice, 2nd ed., McGraw-Hill, New York, USA 1991;
- 1bA. F. Lee, J. A. Bennett, J. C. Manayil, K. Wilson, Chem. Soc. Rev. 2014, 43, 7887–7916.
- 2
- 2aJ. R. Rostrup-Nielsen, R. Nielsen, Catal. Rev. 2004, 46, 247–270;
- 2bZ.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Chem. Soc. Rev. 2011, 40, 4167–4185;
- 2cA. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. Peden, J. Szanyi, Chem. Soc. Rev. 2015, 44, 7371–7405;
- 2dM. N. Tahir, M. Ashraf, S. S. Shah, I. Khan, M. A. Aziz, N. Ullah, M. Khan, S. F. Adil, Z. Liaqat, M. Usman, Chem. Eur. J. 2021, 27, 6973–6984.
- 3J. Pritchard, G. A. Filonenko, R. van Putten, E. J. Hensen, E. A. Pidko, Chem. Soc. Rev. 2015, 44, 3808–3833.
- 4
- 4aF. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng, F.-S. Xiao, J. Am. Chem. Soc. 2012, 134, 16948–16950;
- 4bM. E. Assal, M. R. Shaik, M. Kuniyil, M. Khan, A. Y. Alzahrani, A. Al-Warthan, M. R. H. Siddiqui, S. F. Adil, Catalysts 2017, 7, 391.
- 5R. Schlögl, Angew. Chem. Int. Ed. 2015, 54, 3465–3520; Angew. Chem. 2015, 127, 3531–3589.
- 6M. Boudart, Top. Catal. 1994, 1, 405–414.
- 7M. J. Climent, A. Corma, S. Iborra, M. J. Sabater, ACS Catal. 2014, 4, 870–891.
- 8M. Argyle, C. Bartholomew, Catalysts 2015, 5, 145–269.
- 9
- 9aF. Zaera, Chem. Soc. Rev. 2014, 43, 7624–7663;
- 9bC. M. Friend, B. Xu, Acc. Chem. Res. 2017, 50, 517–521.
- 10
- 10aS. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 2014, 114, 10292–10368;
- 10bD. Deng, K. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. 2016, 11, 218.
- 11P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou, Appl. Catal. B 2015, 162, 227–235.
- 12B. F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54–75.
- 13F. Rodriguez-Reinoso, Carbon 1998, 36, 159–175.
- 14
- 14aM.-M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Chem. Soc. Rev. 2015, 44, 250–290;
- 14bJ. L. Figueiredo, Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection (Eds.: M. Van de Voorde, B. Sels), Wiley-VCH, Weinheim, Germany 2017, pp. 37–56.
10.1002/9783527699827.ch3 Google Scholar
- 15N. Mahmood, C. Zhang, H. Yin, Y. Hou, J. Mater. Chem. A 2014, 2, 15–32.
- 16V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Prog. Mater. Sci. 2011, 56, 1178–1271.
- 17W. Wei, X. Qu, Small 2012, 8, 2138–2151.
- 18J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature 2007, 446, 60–63.
- 19
- 19aY. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805–1834;
- 19bF. Perreault, A. F. De Faria, M. Elimelech, Chem. Soc. Rev. 2015, 44, 5861–5896;
- 19cE. Morales-Narváez, L. F. Sgobbi, S. A. S. Machado, A. Merkoçi, Prog. Mater. Sci. 2017, 86, 1–24.
- 20J. N. Armor, Catal. Today 2011, 163, 3–9.
- 21M. Yusuf, S. A. Hira, H. Lim, S. Song, S. Park, K. H. Park, J. Mater. Chem. A 2021, 9, 9018–9027.
- 22
- 22aP. T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Chem. Rev. 2015, 115, 2483–2531;
- 22bD. Cai, M. Song, J. Mater. Chem. 2010, 20, 7906–7915.
- 23S. Bai, X. Shen, RSC Adv. 2012, 2, 64–98.
- 24
- 24aJ. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 2014, 10, 3480–3498;
- 24bJ. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Catal. 2015, 5, 5207–5234;
- 24cG. Kumar, N. K. Mogha, D. T. Masram, ACS Applied Nano Materials 2021, 4, 2682–2693.
- 25D. Wang, H. Duan, J. Lü, C. Lü, J. Mater. Chem. A 2017, 5, 5088–5097.
- 26M. Amft, S. Lebègue, O. Eriksson, N. V. Skorodumova, J. Phys. Condens. Matter 2011, 23, 395001.
- 27K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda, H. Ishida, Carbon 2011, 49, 1118–1125.
- 28H. Huang, S. Yang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2014, 26, 5160–5165.
- 29P. Yu, X. Wen, Y.-R. Toh, Y.-C. Lee, K.-Y. Huang, S. Huang, S. Shrestha, G. Conibeer, J. Tang, J. Mater. Chem. C 2014, 2, 2894–2901.
- 30R. Li, W. Sun, C. Zhan, P. R. Kent, D.-e. Jiang, Phys. Rev. B 2019, 99, 085429.
- 31C. S. R. Vusa, M. Venkatesan, K. Aneesh, S. Berchmans, P. Arumugam, Sci. Rep. 2017, 7, 1–11.
- 32
- 32aX. Wen, P. Yu, Y.-R. Toh, Y.-C. Lee, K.-Y. Huang, S. Huang, S. Shrestha, G. Conibeer, J. Tang, J. Mater. Chem. C 2014, 2, 3826–3834;
- 32bA. Privitera, M. Righetto, D. Mosconi, F. Lorandi, A. A. Isse, A. Moretto, R. Bozio, C. Ferrante, L. Franco, Phys. Chem. Chem. Phys. 2016, 18, 31286–31295;
- 32cH. L. Tan, H. A. Tahini, X. Wen, R. J. Wong, X. Tan, A. Iwase, A. Kudo, R. Amal, S. C. Smith, Y. H. Ng, Small 2016, 12, 5295–5302.
- 33J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
- 34
- 34aY. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780–786;
- 34bA. Bahuguna, A. Kumar, V. Krishnan, Asian J. Org. Chem. 2019, 8, 1263–1305.
- 35J. Pyun, Angew. Chem. Int. Ed. 2010, 1, 46–48.
- 36
- 36aW. Duncanson, C. Coulson, Proc. Phys. Soc. London Sect. A 1952, 65, 825;
- 36bM. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-warthan, W. Tremel, J. Mater. Chem. A 2015, 3, 18753–18808;
- 36cS. Gao, Z. Zhang, K. Liu, B. Dong, Appl. Catal. B 2016, 188, 245–252;
- 36dP. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu, Z. Zeng, Nanoscale 2012, 4, 5597–5601;
- 36eW. S. Hummers Jr, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339–1339;
- 36fC. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, P. Ares, F. Rodríguez-Reinoso, R. Menéndez, Carbon 2012, 50, 275–282;
- 36gS. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, L. Sun, Carbon 2017, 114, 209–216;
- 36hD. Luo, G. Zhang, J. Liu, X. Sun, J. Phys. Chem. C 2011, 115, 11327–11335;
- 36iS. Pei, H.-M. Cheng, Carbon 2012, 50, 3210–3228;
- 36jY. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D.-M. Zhu, K. Ozawa, L.-C. Qin, Nanoscale 2017, 9, 2585–2595;
- 36kS. F. Adil, M. E. Assal, M. Khan, A. Al-Warthan, M. R. H. Siddiqui, L. M. Liz-Marzán, Dalton Trans. 2015, 44, 9709–9717;
- 36lP. Shubha, K. Namratha, H. Aparna, N. Ashok, M. Mustak, J. Chatterjee, K. Byrappa, Mater. Chem. Phys. 2017, 198, 66–72;
- 36mR. Y. Gengler, K. Spyrou, P. Rudolf, J. Phys. D 2010, 43, 374015.
- 37
- 37aJ. M. Notestein, A. Katz, Chem. Eur. J. 2006, 12, 3954–3965;
- 37bS. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, ChemCatChem 2019, 11, 4489–4518.
- 38
- 38aL. R. Radovic, C. Mora-Vilches, A. J. A. Salgado-Casanova, Chin. J. Catal. 2014, 35, 792–797;
- 38bN. M. Julkapli, S. Bagheri, Int. J. Hydrogen Energy 2015, 40, 948–979.
- 39B. Das, B. Choudhury, A. Gomathi, A. K. Manna, S. Pati, C. Rao, ChemPhysChem 2011, 12, 937–943.
- 40X. Fan, G. Zhang, F. Zhang, Chem. Soc. Rev. 2015, 44, 3023–3035.
- 41K. M. Yam, N. Guo, Z. Jiang, S. Li, C. Zhang, Catalysts 2020, 10, 53.
- 42
- 42aM. Hu, Z. Yao, X. Wang, Ind. Eng. Chem. Res. 2017, 56, 3477–3502;
- 42bS. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti, H. García, Chem. Soc. Rev. 2017, 46, 4501–4529.
- 43X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666–686.
- 44
- 44aV. Agarwal, P. B. Zetterlund, Chem. Eng. J. 2021, 405, 127018;
- 44bZ. Benzait, P. Chen, L. Trabzon, Nanoscale Adv. 2021, 3, 223–230.
- 45H. Chang, H. Wu, Energy Environ. Sci. 2013, 6, 3483–3507.
- 46J. Shen, P. Dong, R. Baines, X. Xu, Z. Zhang, P. M. Ajayan, M. Ye, Chem. Commun. 2016, 52, 9251–9254.
- 47H. Bai, C. Li, G. Shi, Adv. Mater. 2011, 23, 1089–1115.
- 48J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanoscale 2010, 2, 2733–2738.
- 49R. Muszynski, B. Seger, P. V. Kamat, J. Phys. Chem. C 2008, 112, 5263–5266.
- 50M.-K. Chuang, S.-W. Lin, F.-C. Chen, C.-W. Chu, C.-S. Hsu, Nanoscale 2014, 6, 1573–1579.
- 51
- 51aK. Z. Kamali, A. Pandikumar, G. Sivaraman, H. N. Lim, S. P. Wren, T. Sun, N. M. Huang, RSC Adv. 2015, 5, 17809–17816;
- 51bB. Z. Kurt, Z. Durmus, A. Durmus, Solid State Sci. 2016, 51, 51–58.
- 52J. Wen, B. K. Salunke, B. S. Kim, J. Chem. Technol. Biotechnol. 2017, 92, 1428–1435.
- 53A. H. Al-Marri, M. Khan, M. Khan, S. F. Adil, A. Al-Warthan, H. Z. Alkhathlan, W. Tremel, J. P. Labis, M. R. H. Siddiqui, M. N. Tahir, Int. J. Mol. Sci. 2015, 16, 1131–1142.
- 54A. H. Al-Marri, M. Khan, M. R. Shaik, N. Mohri, S. F. Adil, M. Kuniyil, H. Z. Alkhathlan, A. Al-Warthan, W. Tremel, M. N. Tahir, Arab. J. Chem. 2016, 9, 835–845.
- 55R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271–279.
- 56Z. Gao, J. Wang, Z. Li, W. Yang, B. Wang, M. Hou, Y. He, Q. Liu, T. Mann, P. Yang, Chem. Mater. 2011, 23, 3509–3516.
- 57S. K. Konda, A. Chen, Electrochem. Commun. 2015, 60, 148–152.
- 58S. Liu, N. Tian, A.-Y. Xie, J.-H. Du, J. Xiao, L. Liu, H.-Y. Sun, Z.-Y. Cheng, Z.-Y. Zhou, S.-G. Sun, J. Am. Chem. Soc. 2016, 138, 5753–5756.
- 59H. H. Shu, G. Chang, J. Su, L. L. Cao, Q. W. Huang, Y. T. Zhang, T. T. Xia, Y. B. He, Sens. Actuators B 2015, 220, 331–339.
- 60X. Cui, S. Wu, Y. Li, G. G. Wan, Microchim. Acta 2015, 182, 265–272.
- 61S.-J. Li, N. Xia, X.-L. Lv, M.-M. Zhao, B.-Q. Yuan, H. Pang, Sens. Actuators B 2014, 190, 809–817.
- 62A. H. Mady, M. L. Baynosa, D. Tuma, J.-J. Shim, Appl. Catal. B 2017, 203, 416–427.
- 63H. M. Hassan, V. Abdelsayed, S. K. Abd El Rahman, K. M. AbouZeid, J. Terner, M. S. El-Shall, S. I. Al-Resayes, A. A. El-Azhary, J. Mater. Chem. 2009, 19, 3832–3837.
- 64F. Zhang, Z. Wang, Y. Zhang, Z. Zheng, C. Wang, Y. Du, W. Ye, Int. J. Electrochem. Sci. 2012, 7, 1968–1977.
- 65
- 65aX. She, X. Zhang, J. Liu, L. Li, X. Yu, Z. Huang, S. Shang, Mater. Res. Bull. 2015, 70, 945–950;
- 65bN. Garino, A. Sacco, M. Castellino, J. A. Muñoz-Tabares, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia, M. Quaglio, ACS Appl. Mater. Interfaces 2016, 8, 4633–4643.
- 66D. Marquardt, C. Vollmer, R. Thomann, P. Steurer, R. Mülhaupt, E. Redel, C. Janiak, Carbon 2011, 49, 1326–1332.
- 67H. L. Hellstern, J. Becker, P. Hald, M. Bremholm, A. Mamakhel, B. B. Iversen, Ind. Eng. Chem. Res. 2015, 54, 8500–8508.
- 68H. O. Shoyiga, B. S. Martincigh, V. O. Nyamori, Int. J. Energy Res. 2021, 45, 7293–7314.
- 69
- 69aW. Fang, H. Zhao, Y. Xie, J. Fang, J. Xu, Z. Chen, ACS Appl. Mater. Interfaces 2015, 7, 13044–13052;
- 69bM. R. Shaik, A. H. Al-Marri, S. F. Adil, N. Mohri, B. Barton, M. R. H. Siddiqui, A. Al-Warthan, J. P. Labis, W. Tremel, M. Khan, M. N. Tahir, ChemistrySelect 2017, 2, 3078–3083.
- 70K. Zhang, G. Yang, G. Lyu, Z. Jia, L. A. Lucia, J. Chen, ACS Sustainable Chem. Eng. 2019, 7, 11110–11117.
- 71Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Prog. Nat. Sci. 2013, 23, 351–366.
- 72
- 72aJ. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei, Z. Su, RSC Adv. 2015, 5, 22935–22942;
- 72bM. Lee, S. K. Balasingam, H. Y. Jeong, W. G. Hong, B. H. Kim, Y. Jun, Sci. Rep. 2015, 5, 8151.
- 73S. V. Kumar, N. Huang, H. Lim, M. Zainy, I. Harrison, C. H. Chia, Sens. Actuators B 2013, 181, 885–893.
- 74K. Manojkumar, A. Sivaramakrishna, K. Vijayakrishna, J. Nanopart. Res. 2016, 18, 1–22.
- 75J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 2011, 21, 3415–3421.
- 76
- 76aR. Wang, M. Han, Q. Zhao, Z. Ren, X. Guo, C. Xu, N. Hu, L. Lu, Sci. Rep. 2017, 7, 44562;
- 76bS. J. Chin, M. Doherty, S. Vempati, P. Dawson, C. Byrne, B. J. Meenan, V. Guerra, T. McNally, Nanoscale 2019, 11, 18672–18682.
- 77X. Huang, X. Zhou, L. Zhou, K. Qian, Y. Wang, Z. Liu, C. Yu, ChemPhysChem 2011, 12, 278–281.
- 78J. Ge, Q. Zhang, Z. Liu, H. Yang, B. Lu, J. Alloys Compd. 2019, 810, 151894.
- 79S. Baek, S.-H. Yu, S.-K. Park, A. Pucci, C. Marichy, D.-C. Lee, Y.-E. Sung, Y. Piao, N. Pinna, RSC Adv. 2011, 1, 1687–1690.
- 80D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. V. Saraf, D. Hu, J. Zhang, G. L. Graff, ACS Nano 2010, 4, 1587–1595.
- 81F.-A. He, J.-T. Fan, F. Song, L.-M. Zhang, H. L.-W. Chan, Nanoscale 2011, 3, 1182–1188.
- 82J. Park, M. Yan, Acc. Chem. Res. 2012, 46, 181–189.
- 83G. Liu, M. Qi, Y. Zhang, C. Cao, E. M. Goldys, Anal. Chim. Acta 2016, 909, 1–8.
- 84V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156–6214.
- 85S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun, Macromolecules 2010, 43, 10078–10083.
- 86X. Zhou, C. Yuan, D. Qin, Z. Xue, Y. Wang, J. Du, L. Ma, L. Ma, X. Lu, Electrochim. Acta 2014, 119, 243–250.
- 87M. R. Shaik, A. H. Al-Marri, S. F. Adil, N. Mohri, B. Barton, M. R. Siddiqui, A. Al-Warthan, J. P. Labis, W. Tremel, M. Khan, ChemistrySelect 2017, 2, 3078–3083.
- 88
- 88aZ. Ding, F. Li, J. Wen, X. Wang, R. Sun, Green Chem. 2018, 20, 1383–1390;
- 88bY. Mao, C. Zhao, S. Ge, T. Luo, J. Chen, J. Liu, F. Xi, J. Liu, RSC Adv. 2019, 9, 32977–32983;
- 88cD. X. Luong, K. V. Bets, W. A. Algozeeb, M. G. Stanford, C. Kittrell, W. Chen, R. V. Salvatierra, M. Ren, E. A. McHugh, P. A. Advincula, Z. Wang, M. Bhatt, H. Guo, V. Mancevski, R. Shahsavari, B. I. Yakobson, J. M. Tour, Nature 2020, 577, 647–651;
- 88dY. Zhang, X. Zhu, M. Xu, C. Zhou, X. Song, S. Yang, Adv. Eng. Mater. 2019, 21, 1800891.
- 89A. Ciesielski, P. Samorì, Chem. Soc. Rev. 2014, 43, 381–398.
- 90K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, Nat. Mater. 2014, 13, 624–630.
- 91Q. Zhuo, J. Gao, M. Peng, L. Bai, J. Deng, Y. Xia, Y. Ma, J. Zhong, X. Sun, Carbon 2013, 52, 559–564.
- 92T. F. Emiru, D. W. Ayele, Egypt. J. Basic Appl. Sci. 2017, 4, 74–79.
10.1016/j.ejbas.2016.11.002 Google Scholar
- 93P. Tian, L. Tang, J. Xiang, S. P. Lau, S. Yuan, D. Yang, L.-J. Li, K. S. Teng, J. Mater. Chem. C 2022, 10, 571–578.
- 94
- 94aV. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2009, 4, 25–29;
- 94bF. Qing, Y. Zhang, Y. Niu, R. Stehle, Y. Chen, X. Li, Nanoscale 2020, 12, 10890–10911.
- 95
- 95aY. Shen, A. C. Lua, Sci. Rep. 2013, 3, 1–6;
- 95bA. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2009, 9, 30–35.
- 96
- 96aX. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 2009, 324, 1312–1314;
- 96bY. Gong, X. Zhang, G. Liu, L. Wu, X. Geng, M. Long, X. Cao, Y. Guo, W. Li, J. Xu, Adv. Funct. Mater. 2012, 22, 3153–3159;
- 96cF. Godel, V. Zatko, C. Carrétéro, A. Sander, M. Galbiati, A. Vecchiola, P. Brus, O. Bezencenet, B. Servet, M.-B. Martin, ACS Appl. Nano Mater. 2020, 3, 7908–7916;
- 96dP. I. Filho, C. J. Carmalt, P. Angeli, E. S. Fraga, Ind. Eng. Chem. Res. 2020, 59, 1249–1260;
- 96eY. Qian, D. J. Kang, ACS Appl. Mater. Interfaces 2018, 10, 29069–29075.
- 97M. S. Ahmad, Y. Nishina, Nanoscale 2020, 12, 12210–12227.
- 98
- 98aM. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, J. Phys. Chem. C 2011, 115, 19761–19781;
- 98bL. Sun, B. Fugetsu, Mater. Lett. 2013, 109, 207–210;
- 98cS. Presolski, M. Pumera, Angew. Chem. Int. Ed. 2018, 57, 16713–16715; Angew. Chem. 2018, 130, 16955–16957.
- 99G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu, X. Hou, ACS Catal. 2015, 5, 5636–5646.
- 100A. Dhakshinamoorthy, M. Alvaro, P. Concepción, V. Fornés, H. Garcia, Chem. Commun. 2012, 48, 5443–5445.
- 101S. Wu, G. Wen, J. Wang, J. Rong, B. Zong, R. Schlögl, D. S. Su, Catal. Sci. Technol. 2014, 4, 4183–4187.
- 102C. Su, M. Acik, K. Takai, J. Lu, S.-j. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y. J. Chabal, Nat. Commun. 2012, 3, 1298.
- 103Q. Ly, B. V. Merinov, H. Xiao, W. A. Goddard III, T. H. Yu, J. Phys. Chem. C 2017, 121, 24408–24417.
- 104
- 104aC. Walling, Tetrahedron 1985, 41, 3887–3900;
- 104bZ. Komeily-Nia, J.-Y. Chen, B. Nasri-Nasrabadi, W.-W. Lei, B. Yuan, J. Zhang, L.-T. Qu, A. Gupta, J.-L. Li, Phys. Chem. Chem. Phys. 2020, 22, 3112–3121;
- 104cM. S. Ahmad, H. Suzuki, C. Wang, M. Zhao, Y. Nishina, J. Catal. 2018, 365, 344–350.
- 105A. Primo, A. Franconetti, M. Magureanu, N. B. Mandache, C. Bucur, C. Rizescu, B. Cojocaru, V. I. Parvulescu, H. Garcia, Green Chem. 2018, 20, 2611–2623.
- 106D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361–365.
- 107X. Feng, P. Lv, W. Sun, X. Han, L. Gao, G. Zheng, Catal. Commun. 2017, 99, 105–109.
- 108X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma, W. Huang, Appl. Surf. Sci. 2013, 280, 450–455.
- 109M. M. Kadam, K. B. Dhopte, N. Jha, V. G. Gaikar, P. R. Nemade, New J. Chem. 2016, 40, 1436–1442.
- 110A. Jha, D. Mhamane, A. Suryawanshi, S. M. Joshi, P. Shaikh, N. Biradar, S. Ogale, C. V. Rode, Catal. Sci. Technol. 2014, 4, 1771–1778.
- 111J. Wang, S. A. Kondrat, Y. Wang, G. L. Brett, C. Giles, J. K. Bartley, L. Lu, Q. Liu, C. J. Kiely, G. J. Hutchings, ACS Catal. 2015, 5, 3575–3587.
- 112S. Rana, S. B. Jonnalagadda, Catal. Commun. 2017, 100, 183–186.
- 113B. Zahed, H. Hosseini-Monfared, Appl. Surf. Sci. 2015, 328, 536–547.
- 114M. E. Assal, M. R. Shaik, M. Kuniyil, M. Khan, A. Al-Warthan, M. R. H. Siddiqui, S. M. Khan, W. Tremel, M. N. Tahir, S. F. Adil, RSC Adv. 2017, 7, 55336–55349.
- 115J. Li, F. Li, Q. Yang, S. Wang, H. Sun, Q. Yang, J. Tang, S. Liu, Carbon 2021, 182, 715–724.
- 116M. E. Assal, M. R. Shaik, M. Kuniyil, M. Khan, A. Al-Warthan, A. I. Alharthi, R. Varala, M. R. H. Siddiqui, S. F. Adil, Arab. J. Chem. 2019, 12, 54–68.
- 117S. Arumugam, B. C. Mohan, S. V. Vasudevan, R. Vanaraj, B. Rukmanikrishnan, T. Periyasamy, S. P. Asrafali, ChemistrySelect 2017, 2, 6223–6230.
- 118S. Rana, S. B. Jonnalagadda, ChemistrySelect 2017, 2, 2277–2281.
- 119M. Sadiq, S. Sadiq, M. Abid Zia, M. Ali, K. Saeed, M. Sohail Ahmad, R. Ali, C 2016, 2, 8.
10.3390/c2010008 Google Scholar
- 120R. Pocklanova, A. K. Rathi, M. B. Gawande, K. K. R. Datta, V. Ranc, K. Cepe, M. Petr, R. S. Varma, L. Kvitek, R. Zboril, J. Mol. Catal. A 2016, 424, 121–127.
- 121H. Huang, H. Zhang, Z. Ma, Y. Liu, H. Ming, H. Li, Z. Kang, Nanoscale 2012, 4, 4964–4967.
- 122S. M. Hosseini, H. Hosseini-Monfared, V. Abbasi, M. R. Khoshroo, Inorg. Chem. Commun. 2016, 67, 72–79.
- 123Q. Zhao, D. Chen, Y. Li, G. Zhang, F. Zhang, X. Fan, Nanoscale 2013, 5, 882–885.
- 124M. Mahyari, M. S. Laeini, A. Shaabani, H. Kazerooni, Appl. Organomet. Chem. 2015, 29, 456–461.
- 125J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, ACS Catal. 2012, 2, 622–631.
- 126Q. Zhao, C. Bai, W. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Ind. Eng. Chem. Res. 2014, 53, 4232–4238.
- 127Z. Li, S. Wu, H. Ding, D. Zheng, J. Hu, X. Wang, Q. Huo, J. Guan, Q. Kan, New J. Chem. 2013, 37, 1561–1568.
- 128Z. Li, S. Wu, C. Yang, Y. Ma, X. Fu, L. Peng, J. Guan, Q. Kan, Mol. Catal. 2017, 432, 267–273.
- 129C. Wang, L. Hu, Y. Hu, Y. Ren, X. Chen, B. Yue, H. He, Catal. Commun. 2015, 68, 1–5.
- 130C. Wang, L. Hu, M. Wang, Y. Ren, B. Yue, H. He, Chin. J. Catal. 2016, 37, 2003–2008.
- 131Y. Dong, X. Niu, W. Song, D. Wang, L. Chen, F. Yuan, Y. Zhu, Catalysts 2016, 6, 74.
- 132P. Borah, A. Datta, K. T. Nguyen, Y. Zhao, Green Chem. 2016, 18, 397–401.
- 133H. Bi, G. He, R. Xu, Z. Song, J. Zhu, H. Chen, X. Wang, Curr. Org. Chem. 2014, 18, 3136–3140.
- 134P. Mondal, N. Salam, A. Mondal, K. Ghosh, K. Tuhina, S. M. Islam, J. Colloid Interface Sci. 2015, 459, 97–106.
- 135M. Thomas, M. U. D. Sheikh, D. Ahirwar, M. Bano, F. Khan, J. Colloid Interface Sci. 2017, 505, 115–129.
- 136Y. Li, X. Fan, J. Qi, J. Ji, S. Wang, G. Zhang, F. Zhang, Mater. Res. Bull. 2010, 45, 1413–1418.
- 137M. Khan, M. R. Shaik, S. F. Adil, M. Kuniyil, M. Ashraf, H. Frerichs, M. A. Sarif, M. R. H. Siddiqui, A. Al-Warthan, J. P. Labis, Sci. Rep. 2020, 10, 1–14.
- 138M. Gómez-Martínez, E. Buxaderas, I. M. Pastor, D. A. Alonso, J. Mol. Catal. A 2015, 404, 1–7.
- 139M. Khan, M. Kuniyil, M. R. Shaik, M. Khan, S. F. Adil, A. Al-Warthan, H. Z. Alkhathlan, W. Tremel, M. N. Tahir, M. R. H. Siddiqui, Catalysts 2017, 7, 20.
- 140N. Shang, C. Feng, H. Zhang, S. Gao, R. Tang, C. Wang, Z. Wang, Catal. Commun. 2013, 40, 111–115.
- 141Y.-S. Feng, X.-Y. Lin, J. Hao, H.-J. Xu, Tetrahedron 2014, 70, 5249–5253.
- 142W. Fu, Z. Zhang, P. Zhuang, J. Shen, M. Ye, J. Colloid Interface Sci. 2017, 497, 83–92.
- 143R. Nie, J. Shi, W. Du, Z. Hou, Appl. Catal. A 2014, 473, 1–6.
- 144S. Kim, H.-J. Cho, D.-S. Shin, S.-M. Lee, Tetrahedron Lett. 2017, 58, 2421–2425.
- 145S. Moussa, A. R. Siamaki, B. F. Gupton, M. S. El-Shall, ACS Catal. 2011, 2, 145–154.
- 146K. H. Lee, S.-W. Han, K.-Y. Kwon, J. B. Park, J. Colloid Interface Sci. 2013, 403, 127–133.
- 147B. Wang, Y. Wang, X. Guo, Z. Jiao, G. Jin, X. Guo, Catal. Commun. 2017, 101, 36–39.
- 148M. Kim, H. Kang, K. H. Park, Catal. Commun. 2015, 72, 150–155.
- 149S. Diyarbakir, H. Can, O. Metin, ACS Appl. Mater. Interfaces 2015, 7, 3199–3206.
- 150L. Fernández-García, M. Blanco, C. Blanco, P. Álvarez, M. Granda, R. Santamaría, R. Menéndez, J. Mol. Catal. A 2016, 416, 140–146.
- 151P. Wang, G. Zhang, H. Jiao, X. Deng, Y. Chen, X. Zheng, Appl. Catal. A 2015, 489, 188–192.
- 152S. S. Shendage, J. M. Nagarkar, Colloids Interface Sci. Commun. 2014, 1, 47–49.
- 153R. Fareghi-Alamdari, M. G. Haqiqi, N. Zekri, New J. Chem. 2016, 40, 1287–1296.
- 154H. A. Elazab, A. R. Siamaki, S. Moussa, B. F. Gupton, M. S. El-Shall, Appl. Catal. A 2015, 491, 58–69.
- 155X. Liu, X. Zhao, J. Zhu, J. Xu, Appl. Organomet. Chem. 2016, 30, 354–359.
- 156D. Liu, C. Zhang, F. Wang, Z. Huang, N. Zhang, H. Zhou, Y. Kuang, J. Mater. Chem. A 2015, 3, 16583–16589.
- 157S. Kumari, A. Mittal, A. Kumar, S. K. Sharma, ChemistrySelect 2019, 4, 10828–10837.
- 158Z. Li, H. Zhao, H. Han, Y. Liu, J. Song, W. Guo, W. Chu, Z. Sun, Tetrahedron Lett. 2017, 58, 3984–3988.
- 159
- 159aN. Pradhan, A. Pal, T. Pal, Langmuir 2001, 17, 1800–1802;
- 159bK. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Green Chem. 2012, 14, 3164–3174.
- 160L. Jin, G. He, J. Xue, T. Xu, H. Chen, J. Cleaner Prod. 2017, 161, 655–662.
- 161X. Cao, S. Yan, F. Hu, J. Wang, Y. Wan, B. Sun, Z. Xiao, RSC Adv. 2016, 6, 64028–64038.
- 162W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao, C. Wang, Catal. Commun. 2017, 90, 70–74.
- 163C. Su, S. Zhao, P. Wang, W. Chang, K. Chang, H. Zhang, J. Environ. Chem. Eng. 2016, 4, 3433–3440.
- 164J. Wu, W. Liu, X. Xiang, K. Sun, F. Liu, C. Cai, S. Han, Y. Xie, S. Li, X. Zu, Carbon 2017, 117, 192–200.
- 165H. Qiu, F. Qiu, X. Han, J. Li, J. Yang, Appl. Surf. Sci. 2017, 407, 509–517.
- 166J. Liu, C. Ran, Y. Pu, J. X. Wang, D. Wang, J. F. Chen, Can. J. Chem. Eng. 2017, 95, 1297–1304.
- 167K. Hareesh, R. Joshi, D. Sunitha, V. Bhoraskar, S. Dhole, Appl. Surf. Sci. 2016, 389, 1050–1055.
- 168L. Liu, R. Chen, W. Liu, J. Wu, D. Gao, J. Hazard. Mater. 2016, 320, 96–104.
- 169X. T. Tran, M. Hussain, H. T. Kim, Solid State Sci. 2020, 100, 106107.
- 170L. Dou, Y. Wang, Y. Li, H. Zhang, Dalton Trans. 2017, 46, 15836–15847.
- 171J. Shi, R. Nie, P. Chen, Z. Hou, Catal. Commun. 2013, 41, 101–105.
- 172Z. Sun, Z. Rong, Y. Wang, Y. Xia, W. Du, Y. Wang, RSC Adv. 2014, 4, 1874–1878.
- 173X. Ji, X. Niu, B. Li, Q. Han, F. Yuan, F. Zaera, Y. Zhu, H. Fu, ChemCatChem 2014, 6, 3246–3253.
- 174Z. Rong, Z. Sun, Y. Wang, J. Lv, Y. Wang, Catal. Lett. 2014, 144, 980–986.
- 175Q. Zhao, Y. Li, R. Liu, A. Chen, G. Zhang, F. Zhang, X. Fan, J. Mater. Chem. A 2013, 1, 15039–15045.
- 176M. Gopiraman, S. G. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu, I. S. Kim, Catal. Sci. Technol. 2013, 3, 1485–1489.
- 177N. Morimoto, S.-i. Yamamoto, Y. Takeuchi, Y. Nishina, RSC Adv. 2013, 3, 15608–15612.
- 178J.-H. Yangab, D. Ma, RSC Adv. 2013, 3, 10131–10134.
- 179Q. Ling, M. Yang, C. Li, A. Zhang, Mater. Res. Bull. 2015, 70, 68–74.
- 180R. M. Esteban, K. Schütte, P. Brandt, D. Marquardt, H. Meyer, F. Beckert, R. Mülhaupt, H. Kölling, C. Janiak, Nano-Struct. Nano-Objects. 2015, 2, 11–18.
- 181R. M. Esteban, K. Schütte, D. Marquardt, J. Barthel, F. Beckert, R. Mülhaupt, C. Janiak, Nano-Struct. Nano-Objects. 2015, 2, 28–34.
10.1016/j.nanoso.2015.07.002 Google Scholar
- 182J. Zhao, W. Hu, H. Li, M. Ji, C. Zhao, Z. Wang, H. Hu, RSC Adv. 2015, 5, 7679–7686.
- 183J.-Y. Lee, L.-K. Liu, Int. J. Hydrogen Energy 2014, 39, 17492–17500.
- 184K. X. Yao, X. Liu, Z. Li, C. C. Li, H. C. Zeng, Y. Han, ChemCatChem 2012, 4, 1938–1942.
- 185M. Cano, A. M. Benito, E. P. Urriolabeitia, R. Arenal, W. K. Maser, Nanoscale 2013, 5, 10189–10193.
- 186S. Chandra, S. Bag, P. Das, D. Bhattacharya, P. Pramanik, Chem. Phys. Lett. 2012, 519, 59–63.
- 187H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, J. Am. Chem. Soc. 2015, 137, 10484–10487.
- 188P. Liu, W.-T. Chang, M.-Y. Wu, Y.-X. Li, J. Wang, React. Kinet. Mech. Catal. 2015, 116, 409–419.
- 189B. Sheng, L. Hu, T. Yu, X. Cao, H. Gu, RSC Adv. 2012, 2, 5520–5523.