Phylogenetic reconstruction of the genus Tephrocactus (Cactaceae) based on molecular, morphological, and cytogenetical data
Corresponding Author
M. Laura Las Peñas
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Córdoba, Argentina
Address for correspondence: M. Laura Las Peñas,[email protected]Search for more papers by this authorRoberto Kiesling
Instituto Argentino de Investigaciones de Zonas Áridas (UNCuyo-CONICET), Mendoza, Argentina
Search for more papers by this authorGabriel Bernardello
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Córdoba, Argentina
Search for more papers by this authorCorresponding Author
M. Laura Las Peñas
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Córdoba, Argentina
Address for correspondence: M. Laura Las Peñas,[email protected]Search for more papers by this authorRoberto Kiesling
Instituto Argentino de Investigaciones de Zonas Áridas (UNCuyo-CONICET), Mendoza, Argentina
Search for more papers by this authorGabriel Bernardello
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Córdoba, Argentina
Search for more papers by this authorAbstract
Tephrocactus comprises species mainly endemic to Argentina. Molecular phylogenetic analyses of all proposed species of the genus as well as classical (chromosome number, karyotype) and molecular cytogenetical techniques (DNA content, heterochromatin amount, rDNA genes) were conducted. Sequence data of two plastid DNA markers of Tephrocactus taxa were analyzed. Evolution of character states of cytogenetical and morphological (growth form, presence of leaves, glochids and tepal spiny mucrons, flower color) traits were reconstructed. Species show x = 11 with different ploidy levels (2n = 22, 44, 66, 77, 242, 319), small chromosomes, and symmetrical karyotypes. Tephrocactus was recovered as monophyletic with three main clades including 12 species, using molecular and morphological data. Tephrocactus geometricus, T. halophilus, and T. paediophilus are recognized as distinct species. Banding patterns showed CMA+/DAPI− constitutive heterochromatin associated with nuclear organized regions. Heterochromatin amount ranged from 2.99% to 6.50%. The 18S-5.8S-26S ribosomal DNA (rDNA) sites coincided with the CMA+/DAPI− signals. The 5S sites varied with ploidy levels of the taxa. DNA content (2C = 1.99–24.50 pg) had a significant and positive correlation with ploidy level and the number of rDNA genes. The ancestor is reconstructed to have been a dwarf shrub with strong articulation, glochids, and deciduous leaves, white, pink or pearly tepals without spiny mucrons, 2n = 22, low DNA content, and one pair of each rDNA gene followed by three polyploidization events. Tephrocactus diversification has been associated with polyploidy and few cumulative small cryptic chromosomal changes.
Supporting Information
Filename | Description |
---|---|
tax12092-sup-0001-FigureS1.jpgJPEG image, 11.7 MB | Fig. S1 Morphological features of Tephrocactus species. |
tax12092-sup-0002-FigureS2.jpgJPEG image, 3.6 MB | Fig. S2 Seeds of Tephrocactus. |
tax12092-sup-0003-TableS3.docxWord 2007 document , 89.9 KB | Table S1 Correlation analysis between different karyological data in Tephrocactus. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
LITERATURE CITED
- Acosta, M.C., Moscone, E.A. & Cocucci, A.A. 2016. Using chromosomal data in the phylogenetic and molecular dating framework: Karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Pl. Biol. 18: 514–526. https://doi.org/10.1111/plb.12430
- Adams, S.P., Leitch, I.J., Bennett, M.D. & Leitch, A.R. 2000. Aloe L. – A second plant family without (TTTAGGG)n telomeres. Chromosoma 109: 201–205. https://doi.org/10.1007/s004120050429
- Anderson, E.F. 2001. The cactus family. Portland: Timber Press.
- Arakaki, M., Soltis, D.E. & Speranza, P. 2007. New chromosome counts and evidence of polyploidy in Haageocereus and related genera in tribe Trichocereeae and other tribes of Cactaceae. Brittonia 59: 290–297.
- Backeberg, C. 1966. Das Kakteenlexikon. Jena: Fischer.
- Baldwin, S.J. & Husband, B.C. 2013. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Molec. Ecol. 22: 1806–1819. https://doi.org/10.1111/mec.12217
- Bandyopadhyay, B. & Sharma, A. 2000. The use of multivariate analysis of karyotypes to determine relationships between species of Opuntia (Cactaceae). Caryologia 53: 121–126. https://doi.org/10.1080/00087114.2000.10589186
- Bauk, K., Santiñaque, F., López-Carro, B. & Las Peñas, M.L. 2016. Contenido de ADN y patrón de genes ribosomales en el género monotípico Stetsonia (Cactaceae). Bol. Soc. Argent. Bot. 51: 323–330.
- Bennett, M.D. & Leitch, I.J. 2005. Plant genome size research: A field in focus. Ann. Bot. (Oxford) 95: 1–6. https://doi.org/10.1093/aob/mci001
- Bennett, M.D. & Leitch, I.J. 2010. Plant DNA C-values Database, release 5.0. http://data.kew.org/cvalues/ (accessed 15 Aug 2017)
- Bennett, M.D, Bhandol, P. & Leitch, I.J. 2000. Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann. Bot. (Oxford) 86: 859–909. https://doi.org/10.1006/anbo.2000.1253
- Britton, N.L. & Rose, J.N. 1919. The Cactaceae, vol. 1. Washington, D.C.: Carnegie Institution.
- Castro, J.P., Medeiros-Neto, E., Souza, G., Alves, L.I., Batista, F.R. & Felix, L.P. 2016. CMA band variability and physical mapping of 5S and 45S rDNA sites in Brazilian Cactaceae: Pereskioideae and Opuntioideae. Brazil. J. Bot. 39: 613–620. https://doi.org/10.1007/s40415-015-0248-5
- Chiarini, F., Moreno, N., Moré, M. & Barboza, G.E. 2017. Chromosomal changes and recent diversification in the Andean genus Jaborosa (Solanaceae). Bot. J. Linn. Soc. 183: 57–74. https://doi.org/10.1111/boj.12493
- Cota, J.H. & Philbrick, C.T. 1994. Chromosome number variation and polyploidy in the genus Echinocereus (Cactaceae). Amer. J. Bot. 81: 1054–1062.
- Deanna, R., Smith, S.D., Särkinen, T. & Chiarini, F. 2018. Patterns of chromosomal evolution in the florally diverse Andean clade Iochrominae (Solanaceae). Perspect. Pl. Ecol. Evol. Syst. 35: 31–43. https://doi.org/10.1016/j.ppees.2018.09.004
- Del Angel, C., Palomino, G., García, A. & Méndez, I. 2006. Nuclear genome size and karyotype analysis in Mammillaria species (Cactaceae). Caryologia 59: 177–186. https://doi.org/10.1080/00087114.2006.10797914
- Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. 2012. InfoStat, version 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
- Doležel, J., Greilhuber, J. & Suda, J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature, Protoc. 2: 2233–2244. https://doi.org/10.1038/nprot.2007.310
- Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Gerlach, W.L. & Bedbrook, J.R. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 7: 1869–1885.
- Gibson, A.C. & Nobel, P.S. 1986. The cactus primer. Cambridge: Harvard University Press.
10.4159/harvard.9780674281714 Google Scholar
- Gilmer, K. & Thomas, H.-P. 1998. Die Gattung Tephrocactus Lemaire s.str. – Taxonomie, Ökologie und Kultur. Schumannia 2: 85–141.
- Goloboff, P.A., Farris, J.S. & Nixon, K.C. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
- Gorelick, R. & Mahr, D. 2013. Tephrocactus. Cact. Succ. J. (Los Angeles) 85: 272–276.
- Greilhuber, J., Lysák, M., Doležel, J. & Bennett, M.D. 2005. The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann. Bot. (Oxford) 95: 255–260. https://doi.org/10.1093/aob/mci019
- Griffith, M.P. & Porter, J.M. 2009. Phylogeny of Opuntioideae (Cactaceae). Int. J. Pl. Sci. 170: 107–116. https://doi.org/10.1086/593048
- Guerra, M. 1983. O uso do Giemsa em citogenética vegetal: Comparação entre a coloração simples e o bandamento. Ci. & Cult. 35: 190–193.
- Guerra, M. 2000. Patterns of heterochromatin distribution in plant chromosomes. Genet. Molec. Biol. 23: 1029–1041. https://doi.org/10.1590/S1415-47572000000400049
- Hamilton, M.B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec. Ecol. 8: 513–525.
- Hartl, W.P., Klapper, H., Barbier, B., Ensikat, H.J., Dronskowski, R., Müller, P., Ostendorp, G., Tye, A., Bauer, R. & Barthlott, W. 2007. Diversity of calcium oxalate crystals in Cactaceae. Canad. J. Bot. 85: 501–517. https://doi.org/10.1139/B07-046
- Hernández-Hernández, T., Hernández, H.M., De-Nova, J.A., Puente, R., Eguiarte, L.E. & Magallón, S. 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Amer. J. Bot. 98: 44–61. https://doi.org/10.3732/ajb.1000129
- Hernández-Hernández, T., Brown, J.W., Schlumpberger, B.O., Eguiarte, L.E. & Magallón, S. 2014. Beyond aridification: Multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytol. 202: 1382–1397. https://doi.org/10.1111/nph.12752
- Huelsenbeck, J.P. & Ronquist F. 2001. MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
- Hunt, D., Taylor, N. & Graham, C. 2006. The new cactus lexicon: Descriptions and illustrations of the cactus family. Milborne Port: David Hunt Books.
- Jiang, J. & Gill, B.S. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49: 1057–1068. https://doi.org/10.1139/g06-076
- Kiesling, R. 1984. Estudios en Cactaceae de Argentina: Maihueniopsis, Tephrocactus y géneros afines (Opuntioideae). Darwiniana 25: 171–215.
- Kiesling, R., Larrocca, L., Faúndez, J., Metzing, D. & Albesiano, S. 2008. Cactaceae. Pp. 1715–1830 in: F.O. Zuolaga, O. Morrone & M.J. Belgrano (eds.), Catálogo de las plantas vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden 107. Saint Louis: Missouri Botanical Garden Press.
- Knight, C. & Ackerly, D. 2002. Variation in nuclear DNA content across environmental gradients: A quantile regression analysis. Ecol. Lett. 5: 66–76. https://doi.org/10.1046/j.1461-0248.2002.00283.x
- Kumar, S., Stecher, G. & Tamura, K. 2015. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molec. Biol. Evol. 3: 1870–1874. https://doi/10.1093/molbev/msw054
- Lan, T. & Albert, V.A. 2011. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid. B. M. C. Pl. Biol. 11: 126. https://doi.org/10.1186/1471-2229-11-126
- Las Peñas, M.L., Bernardello, G. & Kiesling, R. 2008. Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Pl. Syst. Evol. 272: 211–222. https://doi.org/10.1007/s00606-007-0611-5
- Las Peñas, M.L., Urdampilleta, J.D., Bernardello, G. & Forni-Martins, E.R. 2009. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet. Genome Res. 124: 72–80. https://doi.org/10.1159/000200090
- Las Peñas, M.L., Kiesling, R. & Bernardello, G. 2011. Karyotype, heterochromatin, and physical mapping of 5S and 18-5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 16: 83–90. https://doi.org/10.2985/1070-0048-16.1.83
10.2985/1070-0048-16.1.83 Google Scholar
- Las Peñas, M.L., Urdampilleta, J.D., López-Carro, B., Santiñaque, F., Kiesling, R. & Bernardello, G. 2014. Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Pl. Syst. Evol. 300: 549–558. https://doi.org/10.1007/s00606-013-0903-x
- Las Peñas, M.L., Oakley, L., Moreno, N.C. & Bernardello, G. 2017. Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Botany (Ottawa) 95: 101–120. https://doi.org/10.1139/cjb-2016-0048
- Leitch, A.R. & Leitch, I.J. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481–483. https://doi.org/10.1126/science.1153585
- Leitch, I.J. & Bennett, M.D. 2004. Genome downsizing in polyploid plants. Bot. J. Linn. Soc. 82: 651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x
- Lemaire, C. 1868. Les Cactées. Paris: Librairie Agricole de la Maison Rustique.
- Leuenberger, B. 1976. Die Pollenmorphologie der Cactaceae. Diss. Bot. 31: 1–321.
- Levan, A., Sandberg, A. & Fredga, K. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.
- Mable, B.K. 2004. ‘Why polyploidy is rarer in animals than in plants’: Myths and mechanisms. Biol. J. Linn. Soc. 82: 453–466. https://doi.org/10.1111/j.1095-8312.2004.00332.x
- Maddison, W.P. & Maddison, D.R. 2017. Mesquite: A modular system for evolutionary analysis, version 2.75. http://mesquiteproject.org
- Majure, L.C., Puente, R. & Pinkava, D.J. 2012. Miscellaneous chromosome numbers in Opuntieae DC. (Cactaceae) with a compilation of counts for the group. Haseltonia 18: 67–78. https://doi.org/10.2985/026.018.0109
- Mandujano, M.C. 2007. La clonalidad y sus efectos en la biología de poblaciones. Pp. 215–250 in: L. Eguiarte, V. Souza & X Aguirre. (eds.), Ecología molecular. México D.F.: Instituto Nacional de Ecología.
- Mandujano, M.C., Golubov, J. & Huenneke, L.F. 2007. Effect of reproductive modes and environmental heterogeneity in the population dynamics of a geographically widespread clonal desert cactus. Populat. Ecol. 49: 141–153. https://doi.org/10.1007/s10144-006-0032-2
- Mauseth, J.D. 2006. Wood in the cactus subfamily Opuntioideae has extremely diverse structure. Bradleya 24: 93–106.
10.25223/brad.n24.2006.a10 Google Scholar
- Moreno, N.C., Amarilla, L.D., Las Peñas, M.L. & Bernardello, G. 2015a. Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot. J. Linn. Soc. 177: 263–277. https://doi.org/10.1111/boj.12242
- Moreno, N.C., Las Peñas, M.L. & Bernardello, G. 2015b. Karyotypes, heterochromatin and physical mapping of rDNA in vine Cactaceae (Hylocereineae). Haseltonia 20: 26–33. https://doi.org/10.2985/026.020.0106
10.2985/026.020.0106 Google Scholar
- Moscone, E.A., Klein, F., Lambrou, M., Fuchs, J. & Schweizer, D. 1999. Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42: 1224–1233. https://doi.org/10.1139/g99-070
- Negrón-Ortiz, V. 2007. Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands. Amer. J. Bot. 94: 1360–1370. https://doi.org/10.3732/ajb.94.8.1360
- Nyffeler, R. 2002. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Amer. J. Bot. 89: 312–326. https://doi.org/10.3732/ajb.89.2.312
- Nylander, J.A.A. 2004. MrModeltest2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
- Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey, J.L. 2004. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53: 47–67. https://doi.org/10.1080/10635150490264699
- Ohri, D. 1998. Genome size variation and plant systematics. Ann. Bot. (Oxford) 82: 75–83. https://doi.org/10.1006/anbo.1998.0765
- Palmer, J.D., Jansen, R.K., Michaels, H., Manhart, J. & Chase, M. 1988. Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75: 1180–1206. https://doi.org/10.2307/2399279
- Palomino, G. & Heras, H.M. 2001. Karyotypic studies in Opuntia cochinera, O. hyptiacantha, and O. strepthacantha (Cactaceae). Caryologia 54: 147–154. https://doi.org/10.1080/00087114.2001.10589221
- Palomino, G., Doležel, J., Cid, R., Brunner, I., Méndez, I. & Rubluo, A. 1999. Nuclear genome stability of Mammillaria san-angelensis (Cactaceae) regenerants induced by auxins in long term in vitro culture. Pl. Sci. 141: 191–200. https://doi.org/10.1016/S0168-9452(98)00216-7
- Pinkava, D.J. 2002. On the evolution of the continental North American Opuntioideae. Pp. 59–98 in: D. Hunt & N. Taylor (eds.), Studies in the Opuntioideae (Cactaceae). Succulent Plant Research 6. Milborne Port: David Hunt Books.
- Rambaut, A. & Drummond, A.J. 2007. Tracer, version 1.4. http://tree.bio.ed.ac.uk/software/tracer/
- Raskina, O., Barber, J.C., Nevo, E. & Belyayev, A. 2008. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 120: 351–357. https://doi.org/10.1159/000121084
- Realini, M.F., Gottlieb, A.M., Font, F., Picca, P., Poggio, L. & González, G.E. 2014. Cytogenetic characterization of southern South American species of Opuntia (Cactaceae-Opuntioideae). Pp. 31–50 in: D. Hunt (ed.), Further studies in the Opuntioideae (Cactaceae). Succulent Plant Research 8. Milborne Port: David Hunt Books.
- Ritz, C.M., Reiker, J., Charles, G., Hoxey, P., Hunt, D., Lowry, M., Stuppy, W. & Taylor, N. 2012. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae–Opuntioideae). Molec. Phylogen. Evol. 65: 668–681. https://doi.org/10.1016/j.ympev.2012.07.027
- Robinson, H. 1974. Scanning electron microscope studies of the spines and glochides of the Opuntioideae (Cactaceae). Amer. J. Bot. 61: 278–283.
- Romero Zarco, C. 1986. A new method for estimating karyotype asymmetry. Taxon 35: 556–530. https://doi.org/10.2307/1221906
- Röser, M. 1994. Pathways of karyological differentiation in palms (Arecaceae). Pl. Syst. Evol. 189: 89–118. https://doi.org/10.1007/BF00937580
- Scaldaferro, M., Chiarini, F., Santiñaque, F.F., Bernardello, G. & Moscone, E.A. 2012. Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genet. Resources Crop Evol. 59: 1833–1847. https://doi.org/10.1007/s10722-012-9807-9
- Schumann, K. 1897–1898. Die Cactaceae der Republik Paraguay III. Gattung Cereus. Monatsschr. Kakteenk. 9: 185–188.
- Schwarzacher, T. & Heslop-Harrison, P. 2000. Practical in situ hybridization. Oxford: Bios Scientific Publ.
- Segura, S., Scheinvar, L., Olalde, G., Leblanc, O., Muratalla, A., Gallegos, C. & Flores, S. 2007. Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet. Resources Crop Evol. 54: 1033–1041. https://doi.org/10.1007/s10722-006-9196-z
- Sokal, R.R. & Rohlf, F.J. 1995. Biometry: The principles and practice of statistics in biological research, 3rd ed. New York: Freeman.
- Stebbins, G.L. 1950. Variation and evolution in plants. New York: Columbia University Press.
10.7312/steb94536 Google Scholar
- Stiefkens, L., Las Peñas, M.L., Bernardello, G., Levin, R.A. & Miller J.S. 2010. Karyotypes and fluorescent chromosome banding patterns in southern African Lycium (Solanaceae). Caryologia 63: 50–61. https://doi.org/10.1080/00087114.2010.10589708
- Stuppy, W. 2001. A new combination in Tephrocactus Lem. (Cactaceae). Kew Bull. 56: 1003–1005. https://doi.org/10.2307/4119314
10.2307/4119314 Google Scholar
- Stuppy, W. 2002. Seed characters and the classification of the Opuntioideae. Pp. 25–58 in: D. Hunt & N. Taylor (eds.), Studies in the Opuntioideae (Cactaceae). Succulent Plant Research 6. Milborne Port: David Hunt Books.
- Sumner, A.T. 1990. Chromosome banding. London: Unwin Hyman.
- Taketa, S., Ando, H., Takeda, K., Ichii, M. & von Bothmer, R. 2005. Ancestry of American polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. Ann. Bot. (Oxford) 96: 23–33. https://doi.org/10.1093/aob/mci147
- Tamura, K.G., Stecher, D., Peterson, A., Filipski, A. & Kumar, K. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molec. Biol. Evol. 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
- Uhl, C. 1978. Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80: 491–512.
- Wallace, R.S. 1995. Molecular systematic study of the Cactaceae: Using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 13: 1–12.
- Wallace, R.S. & Gibson, A.C. 2002. Evolution and systematics. Pp. 1–22 in: P. Nobel (ed.), Cacti: Biology and uses. Berkeley: University of California Press.
10.1525/california/9780520231573.003.0001 Google Scholar
- Yuasa, H., Shimizu, H., Kashiwai, S. & Kondo, N. 1974. Chromosome numbers and their bearing on the geographic distribution in the subfamily Opuntioideae (Cactaceae). Rep. Inst. Breed. Res. Tokyo Univ. Agric. 4: 1–10.
- Zonneveld, B.J.M., Leitch, I.J. & Bennett, M.D. 2005. First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. (Oxford) 96: 229–244. https://doi.org/10.1093/aob/mci170