Ni Foam Supported TiO2 Nanorod Arrays with CdS Branches: Type II and Z-Scheme Mechanisms Coexisted Monolithic Catalyst Film for Improved Photocatalytic H2 Production
Mingli Li
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorMeng Wei
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorXiaoer Xie
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorQianwen Dong
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorQiongzhi Gao
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorXin Cai
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorShengsen Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Feng Peng
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006 China
Search for more papers by this authorCorresponding Author
Yueping Fang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Siyuan Yang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorMingli Li
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorMeng Wei
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorXiaoer Xie
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorQianwen Dong
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorQiongzhi Gao
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorXin Cai
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorShengsen Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Feng Peng
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006 China
Search for more papers by this authorCorresponding Author
Yueping Fang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Siyuan Yang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorAbstract
TiO2 has garnered a flourish of interest in the field of energy storage and energy conversion. Herein, a new generation of 3D Ni foam supported in situ grown 1D TiO2 nanoarray (Ni/TiO2) is successfully prepared, through an easy solution-phase hydrothermal process, and then CdS nanorods branched Ni/TiO2 nanoarrays are fabricated (Ni/TiO2@CdS). Their formation parameters and growth mechanism are carefully studied. Both Ni/TiO2 and Ni/TiO2@CdS monolithic catalysts exhibit advantaged photocatalytic (PC) and photoelectrocatalytic (PEC) water splitting properties compared with that of most previously reported TiO2-based film photocatalysts. Mechanism investigation reveals that both type II and Z-scheme charge transport mechanisms coexist in Ni/TiO2@CdS sample, and an additional Z-scheme charge transfer effect accelerates the photogenerated charge separation and transport efficiency. This study may open a new avenue for the utilization of TiO2-based film catalysts in a broader field of energy and environmental catalysis areas.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202200187-sup-0001-SuppData-S1.zip18.7 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Zhang, X. F. Lu, D. Luan, X. W. D. Lou, Angew. Chem., Int. Ed. 2020, 59, 8128.
- 2H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, X. Zhong, Angew. Chem., Int. Ed. 2021, 60, 6137.
- 3H. Song, Y. Lin, Z. Zhang, H. Rao, W. Wang, Y. Fang, Z. Pan, X. Zhong, J. Am. Chem. Soc. 2021, 143, 4790.
- 4F. Shahvaranfard, M. Altomare, Y. Hou, S. Hejazi, W. Meng, B. Osuagwu, N. Li, C. J. Brabec, P. Schmuki, Adv. Funct. Mater. 2020, 30, 1909738.
- 5Y. Zhang, X. He, J. Tang, J. Jiang, X. Ji, C. Wang, ACS Appl. Mater. Interfaces 2019, 11,, 44170.
- 6L. He, R. Ma, N. Du, J. Ren, T. Wong, Y. Li, S. T. Lee, J. Mater. Chem. 2012, 22, 19061.
- 7J. Qiu, S. Li, E. Gray, H. Liu, Q.-F. Gu, C. Sun, C. Lai, H. Zhao, S. Zhang, J. Phys. Chem. C 2014, 118, 8824.
- 8M. Fan, Z. Lin, P. Zhang, X. Ma, K. Wu, M. Liu, X. Xiong, Adv. Energy Mater. 2020, 11, 2003037.
- 9S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Adv. Sci. 2018, 5, 1700772.
- 10Q. C. Liu, J. J. Xu, D. Xu, X. B. Zhang, Nat. Commun. 2015, 6, 7892.
- 11O. Ola, M. M. Maroto-Valer, J. Photoch. Photobio. C 2015, 24, 16.
- 12J. Bai, B. Zhou, Chem. Rev. 2014, 114, 10131.
- 13Z. Yu, H. Liu, M. Zhu, Y. Li, W. Li, Small 2019, 17, e1903378.
- 14I. Khan, A. Jalilov, K. Fujii, A. Qurashi, Sol. RRL 2021, 5, 2000741.
- 15W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, D. B. Kuang, Sci. Rep. 2013, 3, 1352.
- 16Y. Huang, Z. Guo, H. Liu, S. Zhang, P. Wang, J. Lu, Y. Tong, Adv. Funct. Mater. 2019, 29, 1903490.
- 17H. S. Rao, W. Q. Wu, Y. Liu, Y. F. Xu, B. X. Chen, H. Y. Chen, D. B. Kuang, C. Y. Su, Nano Energy 2014, 8, 1.
- 18V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Surf. Interface Anal. 1999, 27, 629.
10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 19C. A. Grimes, J. Mater. Chem. 2007, 17, 1451.
- 20J.-Y. Huang, K.-Q. Zhang, Y.-K. Lai, Int. J. Photoenergy 2013, 2013, 1.
- 21G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2006, 6, 215.
- 22B. Liu, E. S. Aydil, J. Am. Chem. Soc. 2009, 131, 3985.
- 23X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Nano Lett. 2008, 8, 3781.
- 24J. Y. Liao, B. X. Lei, Y. F. Wang, J. M. Liu, C. Y. Su, D. B. Kuang, Chemistry 2011, 17, 1352.
- 25G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang, X. Duan, Nano Lett. 2015, 15, 4692.
- 26G. Dong, X. Cheng, Y. Bi, Sol. RRL 2020, 5, 2000449.
- 27H. Zhang, L. V. Besteiro, J. Liu, C. Wang, G. S. Selopal, Z. Chen, D. Barba, Z. M. Wang, H. Zhao, G. P. Lopinski, S. Sun, F. Rosei, Nano Energy 2021, 79, 105416.
- 28G. S. Selopal, M. Mohammadnezhad, L. V. Besteiro, O. Cavuslar, J. Liu, H. Zhang, F. Navarro-Pardo, G. Liu, M. Wang, E. G. Durmusoglu, H. Y. Acar, S. Sun, H. Zhao, Z. M. Wang, F. Rosei, Adv. Sci. 2020, 7, 2001864.
- 29L. Chang, Z. Sun, Y. H. Hu, Electrochem. Energy R. 2021, 4, 194.
- 30L. Zhou, S. Y. Lu, S. Guo, SusMat 2021, 1, 194.
- 31Y. M. Zhong, S. Y. Yang, X. Cai, S. S. Zhang, Q. Z. Gao, Y. J. Liu, Z. H. Yang, S. H. Yang, Y. P. Fang, Appl. Catal. B-Environ. 2020, 263, 117587.
- 32Z. Li, S. Wu, J. Zhang, K. C. Lee, H. Lei, F. Lin, Z. Wang, Z. Zhu, A. K. Y. Jen, Adv. Energy Mater. 2020, 10, 2000361.
- 33J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 2012, 5,, 5750.
- 34G. Liu, S. Zhang, X. Wu, R. Lin, RSC Adv. 2016, 6, 55671.
- 35S. Yang, H. Guan, Y. Zhong, J. Quan, N. Luo, Q. Gao, Y. Xu, F. Peng, S. Zhang, Y. Fang, Chem. Eng. J. 2021, 405, 126231.
- 36Y. Hu, T. Xiong, M. S. J. T. Balogun, Y. Huang, D. Adekoya, S. Zhang, Y. Tong, Mater. Today Phys. 2020, 15, 100267.
- 37Y. C. Zhu, Y. L. Liu, Y. T. Xu, Y. F. Ruan, G. C. Fan, W. W. Zhao, J. J. Xu, H. Y. Chen, ACS Appl. Mater. Interfaces 2019, 11, 25702.
- 38Y. Zhang, L. Liu, B. Van der Bruggen, M. K. H. Leung, F. Yang, Chem. Eng. J. 2019, 373, 179.
- 39X. Zheng, Z. Han, S. Yao, H. Xiao, F. Chai, F. Qu, X. Wu, Dalton Trans. 2016, 45, 7094.
- 40X. Zheng, Z. Han, W. Yang, F. Qu, B. Liu, X. Wu, Dalton Trans. 2016, 45, 16850.
- 41W. Fei, J. Gao, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, J. Hazard. Mater. 2021, 402, 123515.
- 42J. Hao, X. B. Wang, F. G. Liu, S. Han, J. S. Lian, Q. Jiang, Sci. Rep. 2017, 7, 3021.
- 43C.-J. Chang, J.-K. Chen, K.-S. Lin, C.-Y. Huang, C.-L. Huang, Int. J. Hydrogen Energy 2021, 46, 11357.
- 44F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S. Yang, J. Mater. Chem. A 2020, 8, 3083.
- 45H. Guan, S. Zhang, X. Cai, Q. Gao, X. Yu, X. Zhou, F. Peng, Y. Fang, S. Yang, J. Mater. Chem. A 2019, 7, 2560.
- 46Q. Dong, M. Li, M. Sun, F. Si, Q. Gao, X. Cai, Y. Xu, T. Yuan, S. Zhang, F. Peng, Y. Fang, S. Yang, Small Methods 2021, 5, 2100878.
- 47L.-W. Zhu, H.-X. Li, Z.-G. Ren, H.-F. Wang, W. Yao, J.-P. Lang, RSC Adv. 2013, 3, 15421.
- 48L. Jiao, F. Xie, R. Chen, D. Ye, B. Zhang, L. An, Y. Yu, J. Li, J. Mater. Chem. A 2019, 7, 6275.
- 49A. H. Alami, M. A. Abdelkareem, M. Faraj, K. Aokal, N. Al Safarini, Energy 2020, 208, 118253.
- 50J. Jia, D. Li, X. Cheng, J. Wan, X. Yu, Appl. Catal. A-Gen. 2016, 525, 128.
- 51Y. Yan, X. Cheng, W. Zhang, G. Chen, H. Li, A. Konkin, Z. Sun, S. Sun, D. Wang, P. Schaaf, ACS Sustain. Chem. Eng. 2018, 7, 885.
- 52J. Park, T. Jin, C. Liu, G. Li, M. Yan, ACS Omega 2016, 1, 351.
- 53A. H. Alami, K. Aokal, M. Faraj, Energy 2020, 211, 118689.
- 54A. Kolay, P. Ghosal, M. Deepa, ACS Sustain. Chem. Eng. 2020, 8, 8593.
- 55Y. Zhong, S. Yang, S. Zhang, X. Cai, Q. Gao, X. Yu, Y. Xu, X. Zhou, F. Peng, Y. Fang, J. Power Sources 2019, 430, 32.
- 56X. Cao, G. Tian, Y. Chen, J. Zhou, W. Zhou, C. Tian, H. Fu, J. Mater. Chem. A 2014, 2, 4366.
- 57Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao, H. Yu, Appl. Catal. B. Enveron. 2019, 241, 236.
- 58L. W. Wang, Y. J. Jia, R. Nie, Y. Q. Zhang, F. J. Chen, Z. P. Zhu, J. G. Wang, H. W. Jing, J. Catal. 2017, 349, 1.
- 59Y. P. Liu, B. X. Wang, Q. Zhang, S. Y. Yang, Y. H. Li, J. L. Zuo, H. J. Wang, F. Peng, Green Chem. 2020, 22, 238.
- 60A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, e1807660.
- 61I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003.
- 62J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 2019, 31, e1802981.