Bandgap Engineering and Oxygen Vacancies of NixV2O5+x (x = 1, 2, 3) for Efficient Visible Light-Driven CO2 to CO with Nearly 100% Selectivity
Yong Chen
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorYuanming Zhang
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorWenjing Wang
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorXiaoming Xu
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorYang Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorMengyang Du
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorCorresponding Author
Zhaosheng Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorZhigang Zou
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorYong Chen
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorYuanming Zhang
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorWenjing Wang
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorXiaoming Xu
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorYang Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorMengyang Du
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorCorresponding Author
Zhaosheng Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorZhigang Zou
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Jiangsu Key Laboratory of Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093 China
Search for more papers by this authorAbstract
It is difficult to design a new single-component photocatalyst to simultaneously possess a bandgap small enough to absorb most of sunlight and strong redox ability to reduce CO2 into value-added chemical fuels. Herein, bandgap engineering of nickel vanadate compounds (NixV2O5+x, x = 1, 2, 3) is rationally designed to overcome the above challenge. Through changing the Ni:V ratio, the bandgap and band edge positions of nickel vanadates can be regulated, enabling Ni2V2O7 and Ni3V2O8 to reduce CO2 in the presence of water under visible light irradiation that do not exist in NiV2O6. Ni 3d orbitals of Ni2V2O7 and Ni3V2O8 replace V 3d orbitals of NiV2O6 and hybridize with O 2p orbitals to form the valence band maximums, resulting in their negative shifts. Meanwhile, the relatively weaker effect of the crystal field in VO4 tetrahedron over Ni2V2O7 and Ni3V2O8 results in less V 3d split, thus making the conduction band edges to shift upward. In addition, higher concentration of oxygen vacancies over Ni2V2O7 can further enhance its photocatalytic activity for CO2 conversion into CO with nearly 100% selectivity by prolonging the lifetime of photogenerated carriers and improving the chemisorption of CO2.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200099-sup-0001-SuppData-S1.pdf1.6 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S. C. Lo, A. Ip, Z. Ulissi, E. H. Sargent, Nature 2020, 581, 178; b) J. C. Wang, N. Li, A. M. Idris, J. Wang, X. Du, Z. Pan, Z. Li, Sol. RRL 2021, 5, 2100154; c) X. Xiong, C. Mao, Z. Yang, Q. Zhang, G. I. N. Waterhouse, L. Gu, T. Zhang, Adv. Energy Mater. 2020, 10, 2002928; d) K. Hu, Z. Li, L. Bai, F. Yang, X. Chu, J. Bian, Z. Zhang, H. Xu, L. Jing, Sol. RRL 2021, 5, 2000472.
- 2H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang, F. Zhou, X. Liang, J. Wang, S. Li, M. Yu, Science 2020, 367, 667.
- 3T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N. S. Cortina, J. C. Baret, T. J. Erb, Science 2020, 368, 649.
- 4J. E. Huang, F. Li, A. Ozden, A. Sedighian Rasouli, F. P. Garcia de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C. T. Dinh, D. Sinton, E. H. Sargent, Science 2021, 372, 1074.
- 5T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637.
- 6a) Y. Chen, G. Jia, Y. Hu, G. Fan, Y. H. Tsang, Z. Li, Z. Zou, Sustainable Energy Fuels 2017, 1, 1875; b) H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 2020, 4, 1900546.
- 7a) J. Dong, Y. Kong, H. Cao, Z. Wang, Z. Zhang, L. Zhang, S. Sun, C. Gao, X. Zhu, J. Bao, J. Energy Chem. 2022, 64, 103; b) W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, Z. Zou, Adv. Funct. Mater. 2012, 22, 1215; c) W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, Adv. Funct. Mater. 2013, 23, 1743; d) A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, e1807660.
- 8P. Li, Y. Zhou, Z. Zhao, Q. Xu, X. Wang, M. Xiao, Z. Zou, J. Am. Chem. Soc. 2015, 137, 9547.
- 9S. Wei, Q. Heng, Y. Wu, W. Chen, X. Li, W. Shangguan, Appl. Surf. Sci. 2021, 563, 150273.
- 10P. Li, S. Zhu, H. Hu, L. Guo, T. He, Catal. Today 2019, 335, 300.
- 11a) Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, Z. Zou, J. Am. Chem. Soc. 2010, 132, 14385; b) S. Yan, L. Wan, Z. Li, Z. Zou, Chem. Commun. 2011, 47, 5632–5634.
- 12a) S. Yan, J. Wang, H. Gao, N. Wang, H. Yu, Z. Li, Y. Zhou, Z. Zou, Adv. Funct. Mater. 2013, 23, 758; b) S. Yan, J. Wang, H. Gao, N. Wang, H. Yu, Z. Li, Y. Zhou, Z. Zou, Adv. Funct. Mater. 2013, 23, 1839–1845.
- 13J. Wang, C. Huang, X. Chen, H. Zhang, Z. Li, Z. Zou, Appl. Surf. Sci. 2015, 358, 463.
- 14X. Chen, J. Wang, C. Huang, S. Zhang, H. Zhang, Z. Li, Z. Zou, Catal. Sci. Technol. 2015, 5, 1758.
- 15L. Lu, B. Wang, S. Wang, Z. Shi, S. Yan, Z. Zou, Adv. Funct. Mater. 2017, 27, 1702447.
- 16L. Jiang, Y. Li, X. Wu, G. Zhang, Sci. China Mater. 2021, 64, 2230.
- 17a) L. Wang, G. Liu, B. Wang, X. Chen, C. Wang, Z. Lin, J. Xia, H. Li, Sol. RRL 2021, 5, 2000480; b) A. Nakada, D. Kato, R. Nelson, H. Takahira, M. Yabuuchi, M. Higashi, H. Suzuki, M. Kirsanova, N. Kakudou, C. Tassel, T. Yamamoto, C. M. Brown, R. Dronskowski, A. Saeki, A. Abakumov, H. Kageyama, R. Abe, J. Am. Chem. Soc. 2021, 143, 2491.
- 18X. Tao, Y. Zhao, L. Mu, S. Wang, R. Li, C. Li, Adv. Energy Mater. 2018, 8, 1701392.
- 19a) P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920; b) H. Wu, X. Y. Kong, X. Wen, S. P. Chai, E. C. Lovell, J. Tang, Y. H. Ng, Angew. Chem., Int. Ed. 2021, 60, 8455; c) W. Gao, S. Li, H. He, X. Li, Z. Cheng, Y. Yang, J. Wang, Q. Shen, X. Wang, Y. Xiong, Y. Zhou, Z. Zou, Nat. Commun. 2021, 12, 4747.
- 20a) C. Mu, J. Mao, J. Guo, Q. Guo, Z. Li, W. Qin, Z. Hu, K. Davey, T. Ling, S. Z. Qiao, Adv. Mater. 2020, 32, e1907168; b) S. S. Sankar, K. Karthick, K. Sangeetha, R. S. Gill, S. Kundu, ACS Sustainable Chem. Eng. 2020, 8, 4572.
- 21a) Z. Zhou, J. Zhang, S. Chen, H. Yao, Y. Zhao, Q. Kuang, Q. Fan, Y. Dong, Electrochim. Acta 2020, 359, 136979; b) D. Xia, H. Gao, M. Li, F. Gong, M. Li, Energy Storage Mater. 2021, 35, 169; c) F. Cheng, J. Chen, J. Mater. Chem. 2011, 21, 9841.
- 22a) S. S. Kalanur, H. Seo, Appl. Catal., B 2019, 249, 235; b) H. Wu, R. Irani, K. Zhang, L. Jing, H. Dai, H. Y. Chung, F. F. Abdi, Y. H. Ng, ACS Energy Lett. 2021, 6, 3400; c) Q. Han, X. Bai, J. Chen, S. Feng, W. Gao, W. Tu, X. Wang, J. Wang, B. Jia, Q. Shen, Y. Zhou, Z. Zou, Adv. Mater. 2021, 33, e2006780
- 23M. Subramanian, V. Violet Dhayabaran, M. Shanmugavadivel, Mater. Sci. Eng., B 2020, 259, 114604.
- 24a) Y. Li, H. Sun, Y. Yang, Y. Cao, W. Zhou, H. Chai, J. Colloid Interface Sci. 2020, 580, 298; b) B. Huang, W. Wang, T. Pu, J. Li, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 2019, 375, 121969.
- 25S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu, F. Yang, W. Zhu, C. Wang, Z. Feng, B. Ye, Y. Xie, J. Am. Chem. Soc. 2017, 139, 3438.
- 26C. Zhou, S. Wang, Z. Zhao, Z. Shi, S. Yan, Z. Zou, Adv. Funct. Mater. 2018, 28, 1801214.
- 27A. Lebail, M. A. Lafontaine, Eur. J. Solid State Inorg. Chem. 1990, 27, 671.
- 28a) M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717; b) D. Xia, D. Wang, W. Liu, F. Gong, Chem.- Asian J. 2021, 16, 775; c) J.-S. Park, J. S. Cho, Y. Chan Kang, J. Alloys Compd. 2019, 780, 326; d) A. Karmakar, S. K. Srivastava, J. Mater. Chem. A 2019, 7, 15054.
- 29a) X. Lv, W. Huang, Q. Shi, L. Tang, J. Tang, J. Power Sources 2021, 492, 229623; b) C. Wang, D. Fang, H. E. Wang, Y. Cao, W. Xu, X. Liu, Z. Luo, G. Li, M. Jiang, C. Xiong, Sci. Rep. 2016, 6, 20826; c) S. Chandra Sekhar, G. Nagaraju, D. Narsimulu, B. Ramulu, S. K. Hussain, J. S. Yu, ACS Appl. Mater. Interf. 2020, 12, 27074.
- 30a) S. Chandra Sekhar, G. Nagaraju, B. Ramulu, D. Narsimulu, J. S. Yu, Inorg. Chem. Front. 2019, 6, 1087; b) M. N. Ha, G. Lu, Z. Liu, L. Wang, Z. Zhao, J. Mater. Chem. A 2016, 4, 13155.
- 31J. Tang, J. Ye, J. Mater. Chem. 2005, 15, 4246.
- 32D. Wang, J. Tang, Z. Zou, J. Ye, Chem. Mater. 2005, 17, 5177.
- 33G. R. Rossman, R. D. Shannon, R. K. Waring, J. Solid State Chem. 1981, 39, 277.
- 34a) H. X. Dang, A. J. E. Rettie, C. B. Mullins, J. Phys. Chem. C 2014, 119, 14524;
10.1021/jp508349g Google Scholarb) B. Zhaorigetu, W. Z. Li, R. Kieffer, H. Y. Xu, React. Kinet. Catal. Lett. 2002, 75, 275;10.1023/A:1015298912903 Google Scholarc) A. J. Xu, Q. Lin, B. Zhaorigetu, M. L. Jia, Chem. J. Chin. Univ. 2008, 29, 341.
- 35a) J. Gu, Y. Yan, J. W. Krizan, Q. D. Gibson, Z. M. Detweiler, R. J. Cava, A. B. Bocarsly, J. Am. Chem. Soc. 2014, 136, 830; b) Y. Nakabayashi, M. Nishikawa, Y. Nosaka, Electrochim. Acta 2014, 125, 191; c) N. Sagara, S. Kamimura, T. Tsubota, T. Ohno, Appl. Catal., B 2016, 192, 193–198.
- 36G. Yang, Y. Li, Q. Wang, X. Wang, S. Zuo, H. Zhang, X. Ren, Y. He, F. Ichihara, J. Ye, Sol. RRL 2022, 6, 2100833.
- 37Y. Chen, Y. Zhang, G. Fan, L. Song, G. Jia, H. Huang, S. Ouyang, J. Ye, Z. Li, Z. Zou, Joule 2021, 5, 3235.