Dimensional Engineering Enables 1.31 V Open-Circuit Voltage for Efficient and Stable Wide-Bandgap Halide Perovskite Solar Cells
Yue Yu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorRui Liu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorChang Liu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorTian Hou
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorQiaofeng Wu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorMeng Zhang
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorCorresponding Author
Hua Yu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorYue Yu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorRui Liu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorChang Liu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorTian Hou
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorQiaofeng Wu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorMeng Zhang
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorCorresponding Author
Hua Yu
Institute of Photovoltaic, Southwest Petroleum University, Chengdu, 610500 China
Search for more papers by this authorAbstract
Wide-bandgap (WBG) perovskite solar cells (PSCs) are important ingredients for tandem solar cells and play a crucial role in next-generation multijunction photovoltaics. Yet, the severe open-circuit voltage loss (Vloss) and stability have not been solved. Herein, a dimensionally graded 2D/3D heterostructure is fabricated by in situ fabricating a 2D FPEA2PbI4 capping layer on the surface of the 3D WBG perovskite film. Through this 2D/3D dimensionally graded design, an enhanced build-in potential promotes the oriented transport of photoinduced carriers and reduces the nonradiative recombination, leading to an ultrahigh open-circuit voltage of 1.31 V with a minimum Vloss of 0.43 V in a 1.74 eV WBG perovskite system and a desirable efficiency of 18.06%. A longer photoluminescence lifetime and decreased trap density indicate the reduced trap-assisted nonradiative recombination. Moreover, such a 2D/3D heterostructure exhibits enhanced stability under moisture and heat. This passivation strategy offers an effective approach to achieving high open-circuit voltage WBG PSCs by facile in situ dimensional engineering, which may pave a general way to step forward in achieving high-performance and stable WBG PSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202200021-sup-0001-SuppData-S1.pdf469 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444.
- 2S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, B. Rech, Energy Environ. Sci. 2016, 9, 81.
- 3A. Andruszkiewicz, X. L. Zhang, M. B. Johansson, L. Yuan, E. M. J. Johansson, Nanoscale 2021, 13, 6234.
- 4A. R. Bowman, F. Lang, Y. H. Chiang, A. Jimenez-Solano, K. Frohna, G. E. Eperon, E. Ruggeri, M. Abdi-Jalebi, M. Anaya, B. V. Lotsch, S. D. Stranks, ACS Energy Lett. 2021, 6, 612.
- 5K. A. Bush, A. F. Palmstrom, Z. S. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, Nat. Energy 2017, 2, 17009.
- 6B. B. Chen, N. Y. Ren, Y. C. Li, L. L. Yan, S. Mazumdar, Y. Zhao, X. D. Zhang, Adv. Energy Mater. 2021, 12, 2003628.
- 7D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
- 8Y. Yu, C. L. Wang, C. R. Grice, N. Shrestha, D. W. Zhao, W. Q. Liao, L. Guan, R. A. Awni, W. W. Meng, A. J. Cimaroli, K. Zhu, R. J. Ellingson, Y. F. Yan, ACS Energy Lett. 2017, 2, 1177.
- 9Y. Zhou, Y. H. Jia, H. H. Fang, M. A. Loi, F. Y. Xie, L. Gong, M. C. Qin, X. H. Lu, C. P. Wong, N. Zhao, Adv. Funct. Mater. 2018, 28, 1803130.
- 10M. J. Yang, D. H. Kim, Y. Yu, Z. Li, O. G. Reid, Z. N. Song, D. W. Zhao, C. L. Wang, L. W. Li, Y. Meng, T. Guo, Y. F. Yan, K. Zhu, Mater. Today Energy 2018, 7, 232.
- 11R. A. Belisle, K. A. Bush, L. Bertoluzzi, A. Gold-Parker, M. F. Toney, M. D. McGehee, ACS Energy Lett. 2018, 3, 2694.
- 12E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.
- 13R. J. Stoddard, A. Rajagopal, R. L. Palmer, I. L. Braly, A. K. Y. Jen, H. W. Hillhouse, ACS Energy Lett. 2018, 3, 1261.
- 14S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Yang, J. W. Seo, S. I. Seok, Energy Environ. Sci. 2014, 7, 2614.
- 15D. J. Slotcavage, H. I. Karunadasa, M. D. McGehee, ACS Energy Lett. 2016, 1, 1199.
- 16M. C. Brennan, S. Draguta, P. V. Kamat, M. Kuno, ACS Energy Lett. 2018, 3, 204.
- 17K. A. Bush, K. Frohna, R. Prasanna, R. E. Beal, T. Leijtens, S. A. Swifter, M. D. McGehee, ACS Energy Lett. 2018, 3, 428.
- 18J. Kim, M. I. Saidaminov, H. R. Tan, Y. C. Zhao, Y. Kim, J. Choi, J. W. Jo, J. Fan, R. Quintero-Bermudez, Z. Y. Yang, L. N. Quan, M. Y. Wei, O. Voznyy, E. H. Sargent, Adv. Mater. 2018, 30, 1706275.
- 19Y. Zhou, F. Wang, Y. Cao, J. P. Wang, H. H. Fang, M. A. Loi, N. Zhao, C. P. Wong, Adv. Energy Mater. 2017, 7, 1701048.
- 20C. Chen, Z. N. Song, C. X. Xiao, R. A. Awni, C. L. Yao, N. Shrestha, C. W. Li, S. S. Bista, Y. Zhang, L. Chen, R. J. Ellingson, C. S. Jiang, M. Al-Jassim, G. J. Fang, Y. F. Yan, ACS Energy Lett. 2020, 5, 2560.
- 21S. Gharibzadeh, B. A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J. A. Schwenzer, P. Brenner, R. Schmager, A. A. Haghighirad, L. Weinhardt, U. Lemmer, B. S. Richards, I. A. Howard, U. W. Paetzold, Adv. Energy Mater. 2019, 9, 1803699.
- 22T. Bu, J. Li, Q. Lin, D. P. McMeekin, J. Sun, M. Wang, W. Chen, X. Wen, W. Mao, C. R. McNeill, W. Huang, X.-L. Zhang, J. Zhong, Y.-B. Cheng, U. Bach, F. Huang, Nano Energy 2020, 75, 104917.
- 23C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha, C. Li, G. Yang, F. Yao, X. Zheng, R. J. Ellingson, C.-S. Jiang, M. Al-Jassim, K. Zhu, G. Fang, Y. Yan, Nano Energy 2019, 61, 141.
- 24H. Tan, F. Che, M. Wei, Y. Zhao, M. I. Saidaminov, P. Todorovic, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, E. H. Sargent, Nat. Commun. 2018, 9, 3100.
- 25Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy 2017, 2, 17135.
- 26D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442.
- 27D. Zheng, R. X. Peng, G. Wang, J. L. Logsdon, B. H. Wang, X. B. Hu, Y. Chen, V. P. Dravid, M. R. Wasielewski, J. S. Yu, W. Huang, Z. Y. Ge, T. J. Marks, A. Facchetti, Adv. Mater. 2019, 31, 1903239.
- 28L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Adv. Energy Mater. 2020, 10, 2000197.
- 29Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 2019, 13, 460.
- 30Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 2021, 6, 63.
- 31C. Chen, J. W. Liang, J. J. Zhang, X. X. Liu, X. X. Yin, H. S. Cui, H. B. Wang, C. Wang, Z. F. Li, J. B. Gong, Q. Q. Lin, W. J. Ke, C. Tao, B. Da, Z. J. Ding, X. D. Xiao, G. J. Fang, Nano Energy 2021, 90, 106608.
- 32D. Liu, D. Luo, A. N. Iqbal, K. W. P. Orr, T. A. S. Doherty, Z. H. Lu, S. D. Stranks, W. Zhang, Nat. Mater. 2021, 20, 1337.
- 33P. Gao, A. R. Bin Mohd Yusoff, M. K. Nazeeruddin, Nat. Commun. 2018, 9, 5028.
- 34R. Liu, Y. Yu, T. Hu, F. Zhang, C. Liu, H. Hou, M. Zhang, X. Chen, H. Yu, J. Power Sources 2021, 512, 230452.
- 35R. Liu, H. J. Li, F. Zhang, T. T. Hu, Y. Yu, C. Liu, H. Yu, Sol. Energy 2020, 209, 446.
- 36H. Zhu, Y. Ren, L. Pan, O. Ouellette, F. T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong, S. M. Zakeeruddin, Y. Liu, A. Hagfeldt, M. Grätzel, J. Am. Chem. Soc. 2021, 143, 3231.
- 37J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang, X. Jing, M. Shao, Adv. Mater. 2019, 31, 1901673.
- 38Y. Yu, R. Liu, F. Zhang, C. Liu, Q. Wu, M. Zhang, H. Yu, J. Colloid Interface Sci. 2021, 605, 710.
- 39Y. Boyjoo, M. Wang, V. K. Pareek, J. Liu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 6013.
- 40H. Tian, J. Liang, J. Liu, Adv. Mater. 2019, 31, 1903886.
- 41F. Gong, M. Liu, S. Ye, L. Gong, G. Zeng, L. Xu, X. Zhang, Y. Zhang, L. Zhou, S. Fang, J. Liu, Adv. Funct. Mater. 2021, 31, 2101715.
- 42Q. Zhou, L. S. Liang, J. J. Hu, B. B. Cao, L. K. Yang, T. J. Wu, X. Li, B. Zhang, P. Gao, Adv. Energy Mater. 2019, 9, 1802595.
- 43K. T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P. A. Schouwink, G. Seo, S. Heo, J. Park, J. Jang, S. Paek, G. Garcia-Belmonte, M. K. Nazeeruddin, Energy Environ. Sci. 2018, 11, 952.
- 44G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, Q. Liang, H. Yin, Y. Chen, Y. Zhuang, S. Li, B. Gao, J. Wang, T. Shi, X. Wang, X. Lu, H. Wu, J. Hou, D. Lei, S. K. So, Y. Yang, G. Fang, G. Li, Nat. Photonics 2021, 15, 681.
- 45P. Chen, Y. Bai, S. Wang, M. Lyu, J. H. Yun, L. Wang, Adv. Funct. Mater. 2018, 28, 1706923.
- 46Q. Sun, P. Fassl, D. Becker-Koch, A. Bausch, B. Rivkin, S. Bai, P. E. Hopkinson, H. J. Snaith, Y. Vaynzof, Adv. Energy Mater. 2017, 7, 1700977.
- 47N. Aristidou, C. Eames, I. Sanchez-Molina, X. N. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
- 48P. Cui, D. Wei, J. Ji, H. Huang, E. Jia, S. Dou, T. Wang, W. Wang, M. Li, Nat. Energy 2019, 4, 150.
- 49J. Lu, X. Lin, X. Jiao, T. Gengenbach, A. D. Scully, L. Jiang, B. Tan, J. Sun, B. Li, N. Pai, U. Bach, A. N. Simonov, Y.-B. Cheng, Energy Environ. Sci. 2018, 11, 1880.
- 50W. T. Wang, P. Chen, C. H. Chiang, T. F. Guo, C. G. Wu, S. P. Feng, Adv. Funct. Mater. 2020, 30, 1909755.
- 51J.-H. Lee, J. Kim, G. Kim, D. Shin, S. Y. Jeong, J. Lee, S. Hong, J. W. Choi, C.-L. Lee, H. Kim, Y. Yi, K. Lee, Energy Environ. Sci. 2018, 11, 1742.
- 52E. Akman, S. Akin, Adv. Mater. 2020, 33, 2006087.
- 53Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2020, 31, 2005776.
- 54G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang, G. Xing, Adv. Mater. 2022, 34, 2105625.