Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials
Mohd Monis Ayyub
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorReetendra Singh
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorCorresponding Author
Chintamani Nagesa Ramachandra Rao
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorMohd Monis Ayyub
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorReetendra Singh
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorCorresponding Author
Chintamani Nagesa Ramachandra Rao
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorAbstract
Hydrogen is clearly the most environment-friendly alternative energy source available to us. The best way to produce hydrogen is to make use of the abundantly available solar power. This process is most beneficial both from energy and environmental aspects. A considerable effort is made to generate hydrogen by splitting water using a variety of inorganic catalysts, of which 2D materials are notable. Herein, a brief review of photocatalytic water splitting carried out using a variety of 2D catalysts is presented, including transition metal dichalcogenides, carbon nitride, heterostructures, and covalently cross-linked 2D composites.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1R. Peierls, Annales de l'institut Henri Poincaré 1935, 177.
- 2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 3M. Katsnelson, K. Novoselov, A. Geim, Nat. Phys. 2006, 2, 620.
- 4Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803.
- 5G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. Van Den Brink, Phys. Rev. B 2007, 76, 073103.
- 6H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 2011, 21, 3335.
- 7P. Vishnoi, K. Pramoda, C. N. R. Rao, ChemNanoMat 2019, 5, 1062.
- 8X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 2014, 43, 3303.
- 9a) E. Antolini, Appl. Catal. B 2012, 123, 52; b) S. H. Hur, J. N. Park, Asia-Pac. J. Chem. Eng. 2013, 8, 218; c) X. An, C. Y. Jimmy, RSC Adv. 2011, 1, 1426.
- 10Y. Guo, J. Dai, J. Zhao, C. Wu, D. Li, L. Zhang, W. Ning, M. Tian, X. C. Zeng, Y. Xie, Phys. Rev. Lett. 2014, 113, 157202.
- 11P. K. Kannan, D. J. Late, H. Morgan, C. S. Rout, Nanoscale 2015, 7, 13293.
- 12K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. 2005, 102, 10451.
- 13C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Chem. Rev. 2017, 117, 6225.
- 14a) Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782; b) Q. Xiang, J. Yu, J. Phys. Chem. Lett. 2013, 4, 753; c) G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater. 2013, 25, 3820.
- 15a) T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, H. Teng, Adv. Func. Mater. 2010, 20, 2255; b) K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 2009, 9, 1058; c) D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A. T. S. Wee, Z. Shen, Carbon 2011, 49, 1362.
- 16a) T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, ACS Catal. 2018, 8, 2253; b) T. Su, Z. Qin, H. Ji, Z. Wu, Nanotechnol. 2019, 30, 502002; c) Y. Li, Y.-L. Li, B. Sa, R. Ahuja, Catal. Sci. Technol. 2017, 7, 545; d) B. Luo, G. Liu, L. Wang, Nanoscale 2016, 8, 6904.
- 17A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 18a) C. N. R. Rao, S. R. Lingampalli, Small 2016, 12, 16; b) K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655; c) J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787.
- 19a) S. R. Lingampalli, U. K. Gautam, C. N. R. Rao, Energy Environ. Sci. 2013, 6, 3589; b) K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 2012, 134, 10337.
- 20I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 2005, 44, 3565.
- 21F. N. Sayed, O. Jayakumar, R. Sasikala, R. Kadam, S. R. Bharadwaj, L. Kienle, U. Schürmann, S. R. Kaps, R. Adelung, J. Mittal, J. Phys. Chem. C 2012, 116, 12462.
- 22H.-Y. Lin, H.-C. Yang, W.-L. Wang, Catal. Today 2011, 174, 106.
- 23A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin, P. A. Manorik, J. Photochem. Photobiol. A 2008, 198, 126.
- 24R. G. Dickinson, L. Pauling, J. Am. Chem. Soc. 1923, 45, 1466.
- 25B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol 2011, 6, 147.
- 26A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
- 27a) D. M. Andoshe, J.-M. Jeon, S. Y. Kim, H. W. Jang, Electron. Mater. Lett. 2015, 11, 323; b) X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, M. Pumera, Chem. Rev. 2015, 115, 11941.
- 28M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
- 29a) K. Kobayashi, J. Yamauchi, Phys. Rev. B 1995, 51, 17085; b) T. Li, G. Galli, J. Phys. Chem. C 2007, 111, 16192; c) L. Liu, S. B. Kumar, Y. Ouyang, J. Guo, IEEE Trans. Electron Devices 2011, 58, 3042; d) Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Phys. B 2011, 406, 2254; e) C. Ataca, H. Sahin, S. Ciraci, J. Phys. Chem. C 2012, 116, 8983.
- 30a) K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805; b) T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Phys. Rev. B 2001, 64, 235305.
- 31T. Cheiwchanchamnangij, W. R. Lambrecht, Phys. Rev. B 2012, 85, 205302.
- 32a) G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111; b) S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, J. Wu, Nano Lett. 2012, 12, 5576; c) W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, ACS Nano 2012, 7, 791.
- 33H. Jiang, J. Phys. Chem. C 2012, 116, 7664.
- 34H. L. Zhuang, R. G. Hennig, J. Phys. Chem. C 2013, 117, 20440.
- 35B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
- 36T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
- 37X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 2008, 130, 7176.
- 38X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li, J. Phys. Chem. C 2011, 115, 12202.
- 39Z. Lin, J. Li, Z. Zheng, L. Li, L. Yu, C. Wang, G. Yang, Adv. Energy Mater. 2016, 6, 1600510.
- 40L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, Appl. Catal. B 2014, 144, 521.
- 41Y. Zhu, Q. Ling, Y. Liu, H. Wang, Y. Zhu, Phys. Chem. Chem. Phys. 2015, 17, 933.
- 42G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu, Q. Meng, Appl. Catal. A 2012, 443, 138.
- 43D. P. Kumar, S. Hong, D. A. Reddy, T. K. Kim, J. Mater. Chem. A 2016, 4, 18551.
- 44Y.-J. Yuan, F. Wang, B. Hu, H.-W. Lu, Z.-T. Yu, Z.-G. Zou, Dalton Trans. 2015, 44, 10997.
- 45X. Fu, L. Zhang, L. Liu, H. Li, S. Meng, X. Ye, S. Chen, J. Mater. Chem. A 2017, 5, 15287.
- 46X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li, Chem. Comm. 2009, 4536.
- 47U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, C. N. R. Rao, Angew. Chem. Int. Ed. 2013, 52, 13057.
- 48R. Peng, L. Liang, Z. D. Hood, A. Boulesbaa, A. Puretzky, A. V. Ievlev, J. Come, O. S. Ovchinnikova, H. Wang, C. Ma, ACS Catal. 2016, 6, 6723.
- 49W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 2013, 9, 140.
- 50D. Jing, L. Guo, Catal. Comm. 2007, 8, 795.
- 51B. Mahler, V. Hoepfner, K. Liao, G. A. Ozin, J. Am. Chem. Soc. 2014, 136, 14121.
- 52Y. Li, P. Zhang, D. Wan, C. Xue, J. Zhao, G. Shao, Appl. Surf. Sci. 2020, 504, 144361.
- 53a) J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 2015, 8, 1594; b) P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao, D. Xue, ACS Energy Lett. 2017, 2, 745; c) X. Huang, M. Leng, W. Xiao, M. Li, J. Ding, T. L. Tan, W. S. V. Lee, J. Xue, Adv. Func. Mater. 2017, 27, 1604943.
- 54D. Gao, B. Xia, C. Zhu, Y. Du, P. Xi, D. Xue, J. Ding, J. Wang, J. Mater. Chem. A 2018, 6, 510.
- 55a) Q. Yue, S. Chang, S. Qin, J. Li, Phys. Lett. A 2013, 377, 1362; b) D. Y. Chung, S.-K. Park, Y.-H. Chung, S.-H. Yu, D.-H. Lim, N. Jung, H. C. Ham, H.-Y. Park, Y. Piao, S. J. Yoo, Nanoscale 2014, 6, 2131; c) D. Wang, X. Zhang, Y. Shen, Z. Wu, RSC Adv. 2016, 6, 16656; d) Y. An, X. Fan, H. Liu, Z. Luo, Comput. Mater. Sci. 2019, 159, 333.
- 56S. Hong, D. P. Kumar, E. H. Kim, H. Park, M. Gopannagari, D. A. Reddy, T. K. Kim, J. Mater. Chem. A 2017, 5, 20851.
- 57Z. G. Yu, B. I. Yakobson, Y.-W. Zhang, ACS Appl. Energy Mater. 2018, 1, 4115.
- 58J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
- 59J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881.
- 60S. Zhang, H. Yang, H. Gao, R. Cao, J. Huang, X. Xu, ACS Appl. Mater. Interfaces 2017, 9, 23635.
- 61S. Kumar, A. Kumar, V. Navakoteswara Rao, A. Kumar, M. V. Shankar, V. Krishnan, ACS Appl. Energy Mater. 2019, 2, 5622.
- 62a) D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, Nat. Mater. 2013, 12, 850; b) D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222; c) M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
- 63U. Gupta, B. Naidu, U. Maitra, A. Singh, S. N. Shirodkar, U. V. Waghmare, C. N. R. Rao, APL Mater. 2014, 2, 092802.
- 64a) M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6, 5982; b) Y. F. Xu, M. R. Gao, Y. R. Zheng, J. Jiang, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 8546; c) Y.-R. Zheng, M.-R. Gao, Z.-Y. Yu, Q. Gao, H.-L. Gao, S.-H. Yu, Chem. Sci. 2015, 6, 4594.
- 65Y.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao, H.-X. Ju, R. Wu, Q. Gao, R. You, W.-X. Huang, Nat. Comm. 2018, 9, 2533.
- 66J. Liebig, Annalen der Pharmacie 1834, 10, 1.
10.1002/jlac.18340100102 Google Scholar
- 67E. C. Franklin, J. Am. Chem. Soc. 1922, 44, 486.
- 68L. Pauling, J. Sturdivant, Proc. Natl. Acad. Sci. U.S.A. 1937, 23, 615.
- 69S. Cao, J. Yu, J. Phys. Chem. Lett. 2014, 5, 2101.
- 70a) F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2006, 45, 4467; b) F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chem. Commun. 2006, 4530
- 71X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
- 72Y. Wang, J. Hong, W. Zhang, R. Xu, Catal. Sci. Technol. 2013, 3, 1703.
- 73S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452.
- 74X. Chen, Y.-S. Jun, K. Takanabe, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Chem. Mater. 2009, 21, 4093.
- 75E. Z. Lee, Y. S. Jun, W. H. Hong, A. Thomas, M. M. Jin, Angew. Chem. Int. Ed. 2010, 49, 9706.
- 76X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Chem. Mater. 2011, 23, 4344.
- 77J. Zhang, F. Guo, X. Wang, Adv. Func. Mater. 2013, 23, 3008.
- 78Z. Fang, Y. Hong, D. Li, B. Luo, B. Mao, W. Shi, ACS Appl. Mater. Interfaces 2018, 10, 20521.
- 79X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 2019, 59, 644.
- 80a) G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 2012, 22, 8083; b) F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S. Lee, J. Mater. Chem. 2011, 21, 15171.
- 81H. Wang, W. Zhou, P. Li, X. Tan, Y. Liu, W. Hu, J. Ye, T. Yu, J. Phys. Chem. C 2018, 122, 17261.
- 82G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H.-M. Cheng, J. Am. Chem. Soc. 2010, 132, 11642.
- 83J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 2011, 4, 675.
- 84J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 2012, 22, 15006.
- 85G. Dong, K. Zhao, L. Zhang, Chem. Commun. 2012, 48, 6178.
- 86Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Chem. Mater. 2010, 22, 5119.
- 87S. Yan, Z. Li, Z. Zou, Langmuir 2010, 26, 3894.
- 88G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater. 2014, 26, 805.
- 89a) J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 2012, 48, 12017; b) G. Dong, Z. Ai, L. Zhang, RSC Adv. 2014, 4, 5553.
- 90L. Zhang, X. Chen, J. Guan, Y. Jiang, T. Hou, X. Mu, Mater. Res. Bull. 2013, 48, 3485.
- 91G. Y. Zhuge, W. D. Zhang, ChemCatChem 2019, 11, 1045.
- 92H. Gao, S. Yan, J. Wang, Z. Zou, Dalton Trans. 2014, 43, 8178.
- 93X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 2009, 21, 1609.
- 94Z. Ding, X. Chen, M. Antonietti, X. Wang, ChemSusChem 2011, 4, 274.
- 95H. Li, Y. Xia, Z. Liang, G. Ba, W. Hou, ACS Appl. Energy Mater. 2020, 3, 377.
- 96Z. Liang, Y. Xia, G. Ba, H. Li, Q. Deng, W. Hou, Catal. Sci. Technol. 2019, 9, 6627.
- 97J.-C. Wang, C.-X. Cui, Q.-Q. Kong, C.-Y. Ren, Z. Li, L. Qu, Y. Zhang, K. Jiang, ACS Sustainable Chem. Eng. 2018, 6, 8754.
- 98Z. Fang, D. Li, R. Chen, Y. Huang, B. Luo, W. Shi, ACS Appl. Mater. Interfaces 2019, 11, 22255.
- 99C. Wang, W. Wang, H. Fan, N. Zhao, J. Ma, M. Zhang, A. K. Yadav, ACS Appl. Mater. Interfaces 2019, 12, 5234.
- 100Q.-H. Zhu, Z. Chen, L.-N. Tang, Y. Zhong, X.-F. Zhao, L.-Z. Zhang, J.-H. Li, Int. J. Hydrogen Energy 2019, 44, 27704.
- 101D. Zhao, C. L. Dong, B. Wang, C. Chen, Y. C. Huang, Z. Diao, S. Li, L. Guo, S. Shen, Adv. Mater. 2019, 31, 1903545.
- 102a) Y. S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Func. Mater. 2013, 23, 3661; b) M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 2013, 135, 7118; c) J. Xu, H. Wang, C. Zhang, X. Yang, S. Cao, J. Yu, M. Shalom, Angew. Chem. Int. Ed. 2017, 56, 8426.
- 103S. Bellamkonda, R. Shanmugam, R. R. Gangavarapu, J. Mater. Chem. A 2019, 7, 3757.
- 104C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, Appl. Catal. B 2019, 256, 117867.
- 105Q. Li, X. Li, S. Wageh, A. A. Al-Ghamdi, J. Yu, Adv. Energy Mater. 2015, 5, 1500010.
- 106N. Singh, G. Jabbour, U. Schwingenschlögl, Eur. Phys. J. B 2012, 85, 392.
- 107B. Zhu, X. Chen, X. Cui, Sci. Rep. 2015, 5, 9218.
- 108J. Ran, T. Y. Ma, G. Gao, X.-W. Du, S. Z. Qiao, Energy Environ. Sci. 2015, 8, 3708.
- 109Y. Ren, C. Wang, Y. Qi, Z. Chen, Y. Jia, Q. Xu, Appl. Surf. Sci. 2017, 419, 573.
- 110D. Ma, J.-W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, ACS Appl. Mater. Interfaces 2017, 9, 25377.
- 111V. O. Özcelik, J. G. Azadani, C. Yang, S. J. Koester, T. Low, Phys. Rev. B 2016, 94, 035125.
- 112Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, K. Tay Beng, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan, Nat. Mater. 2014, 13, 1135.
- 113S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, J. Wu, Nano Lett. 2014, 14, 3185.
- 114J. Jia, W. Sun, Q. Zhang, X. Zhang, X. Hu, E. Liu, J. Fan, Appl. Catal. B 2020, 261, 118249.
- 115B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma, G. Yang, Appl. Catal. B 2018, 220, 542.
- 116X. Cai, J. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B 2017, 202, 191.
- 117S. J. A. Moniz, S. A. Shevlin, X. An, Z.-X. Guo, J. Tang, Chem. Eur. J. 2014, 20, 15571.
- 118Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611.
- 119T. Su, Z. D. Hood, M. Naguib, L. Bai, S. Luo, C. M. Rouleau, I. N. Ivanov, H. Ji, Z. Qin, Z. Wu, Nanoscale 2019, 11, 8138.
- 120D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, ACS Appl. Mater. Interfaces 2015, 7, 19234.
- 121W. Gu, F. Lu, C. Wang, S. Kuga, L. Wu, Y. Huang, M. Wu, ACS Appl. Mater. Interfaces 2017, 9, 28674.
- 122C. Pu, J. Wan, E. Liu, Y. Yin, J. Li, Y. Ma, J. Fan, X. Hu, Appl. Surf. Sci. 2017, 399, 139.
- 123S. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, J. Am. Chem. Soc. 2014, 136, 1872.
- 124S. Megala, M. Sathish, S. Harish, M. Navaneethan, S. Sohila, B. Liang, R. Ramesh, Appl. Surf. Sci. 2019, 509, 144656.
- 125a) S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 2015, 8, 731; b) S. Wang, H. Tian, C. Ren, J. Yu, M. Sun, Sci. Rep. 2018, 8, 1; c) L. Ju, Y. Dai, W. Wei, M. Li, B. Huang, Appl. Surf. Sci. 2018, 434, 365.
- 126N. Srinivasan, E. Sakai, M. Miyauchi, ACS Catal. 2016, 6, 2197.
- 127X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T. F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P. M. Ajayan, Adv. Energy Mater. 2017, 7, 1700025.
- 128W. Chen, Z.-C. He, G.-B. Huang, C.-L. Wu, W.-F. Chen, X.-H. Liu, Chem. Eng. J. 2019, 359, 244.
- 129J. Hu, D. Chen, Z. Mo, N. Li, Q. Xu, H. Li, J. He, H. Xu, J. Lu, Angew. Chem. Int. Ed. 2019, 58, 2073.
- 130J. Shi, S. Li, F. Wang, L. Gao, Y. Li, X. Zhang, J. Lu, Dalton Trans. 2019, 48, 3327.
- 131Z. Zhang, J. T. Yates Jr, Chem. Rev. 2012, 112, 5520.
- 132D. Gu, X. Tao, H. Chen, W. Zhu, Y. Ouyang, Y. Du, Q. Peng, Phys. Status Solidi-R 2020, 14, 1900582.
- 133Y. Fan, J. Wang, M. Zhao, Nanoscale 2019, 11, 14836.
- 134C. F. Fu, R. Zhang, Q. Luo, X. Li, J. Yang, J. Comput. Chem. 2019, 40, 980.
- 135S. Min, G. Lu, J. Phys. Chem. C 2012, 116, 25415.
- 136K. Pramoda, U. Gupta, M. Chhetri, A. Bandyopadhyay, S. K. Pati, C. N. R. Rao, ACS Appl. Mater. Interfaces 2017, 9, 10664.
- 137N. K. Singh, A. Soni, R. Singh, U. Gupta, K. Pramoda, C. N. R. Rao, J. Chem. Sci. 2018, 130, 131.
- 138K. Pramoda, U. Gupta, I. Ahmad, R. Kumar, C. N. R. Rao, J. Mater. Chem. A 2016, 4, 8989.
- 139K. Pramoda, M. M. Ayyub, N. K. Singh, M. Chhetri, U. Gupta, A. Soni, C. N. R. Rao, J. Phys. Chem. C 2018, 122, 13376.
- 140P. Vishnoi, K. Pramoda, U. Gupta, M. Chhetri, R. G. Balakrishna, C. N. R. Rao, ACS Appl. Mater. Interfaces 2019, 11, 27780.
- 141R. Singh, U. Gupta, V. S. Kumar, M. M. Ayyub, U. V. Waghmare, C. N. R. Rao, ChemPhysChem 2019, 20, 1728.
- 142X.-Y. Liu, H. Chen, R. Wang, Y. Shang, Q. Zhang, W. Li, G. Zhang, J. Su, C. T. Dinh, F. P. G. de Arquer, J. Li, J. Jiang, Q. Mi, R. Si, X. Li, Y. Sun, Y.-T. Long, H. Tian, E. H. Sargent, Z. Ning, Adv. Mater. 2017, 29, 1605646.
- 143W. Feng, Y. Wang, X. Huang, K. Wang, F. Gao, Y. Zhao, B. Wang, L. Zhang, P. Liu, Appl. Catal. B 2018, 220, 324.
- 144A. Chauhan, M. Rastogi, P. Scheier, C. Bowen, R. V. Kumar, R. Vaish, Appl. Phys. Rev. 2018, 5, 041111.
- 145D. Zheng, X.-N. Cao, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 11512.
- 146Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, L. Sun, Nano Energy 2019, 59, 537.
- 147Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, S.-T. Lee, J. Phys. Chem. C 2018, 122, 3123.
- 148Z. Zhou, X. Niu, Y. Zhang, J. Wang, J. Mater. Chem. A 2019, 7, 21835.
- 149R. Peng, Y. Ma, B. Huang, Y. Dai, J. Mater. Chem. A 2019, 7, 603.
- 150a) L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372; b) B. Sa, Y.-L. Li, J. Qi, R. Ahuja, Z. Sun, J. Phys. Chem. C 2014, 118, 26560.
- 151a) W. Hu, L. Lin, R. Zhang, C. Yang, J. Yang, J. Am. Chem. Soc. 2017, 139, 15429; b) J. Ran, B. Zhu, S.-Z. Qiao, Angew. Chem. Int. Ed. 2017, 56, 10373; c) S. Zhou, N. Liu, J. Zhao, Comput. Mater. Sci. 2017, 130, 56.
- 152S. K. Muduli, E. Varrla, Y. Xu, S. A. Kulkarni, A. Katre, S. Chakraborty, S. Chen, T. C. Sum, R. Xu, N. Mathews, J. Mater. Chem. A 2017, 5, 24874.
- 153J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S. Z. Qiao, Adv. Mater. 2018, 30, 1800128.
- 154P. Vishnoi, U. Gupta, R. Pandey, C. N. R. Rao, J. Mater. Chem. A 2019, 7, 6631.
- 155Y. Mi, L. Wen, Z. Wang, D. Cao, R. Xu, Y. Fang, Y. Zhou, Y. Lei, Nano Energy 2016, 30, 109.
- 156a) R. Fu, X. Zeng, L. Ma, S. Gao, Q. Wang, Z. Wang, B. Huang, Y. Dai, J. Lu, J. Power Sources 2016, 312, 12; b) K.-H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, Nano Energy 2015, 18, 222; c) W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, H. Li, J. Mater. Chem. A 2017, 5, 4894.
- 157a) M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, P. Maksymovych, Adv. Mater. 2017, 29, 1602852; b) J. Liu, X.-B. Li, D. Wang, W.-M. Lau, P. Peng, L.-M. Liu, J. Chem. Phys. 2014, 140, 054707; c) C. C. Mayorga-Martinez, Z. K. Sofer, D. Sedmidubský, S. T. P. N. Huber, A. Y. S. Eng, M. Pumera, ACS Appl. Mater. Interfaces 2017, 9, 12563.
- 158a) D. Mukherjee, P. M. Austeria, S. Sampath, ACS Energy Lett. 2016, 1, 367; b) R. N. Jenjeti, M. P. Austeria, S. Sampath, ChemElectroChem 2016, 3, 1392; c) S. Sarkar, D. Mukherjee, S. Sampath, J. Power Sources 2017, 362, 80.
- 159M. Barua, M. M. Ayyub, P. Vishnoi, K. Pramoda, C. N. R. Rao, J. Mater. Chem. A 2019, 7, 22500.
- 160S. Yao, X. Zhang, Z. Zhang, A. Chen, Z. Zhou, Int. J. Hydrogen Energy 2019, 44, 5948.
- 161a) M. W. Barsoum, M. Radovic, Ann. Rev. Mater. Res. 2011, 41, 195; b) M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248; c) M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012, 6, 1322.
- 162a) M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502; b) Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A. I. Kolesnikov, P. R. Kent, J. Am. Chem. Soc. 2014, 136, 6385; c) M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78; d) Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 2012, 134, 16909; e) D. Er, J. Li, M. Naguib, Y. Gogotsi, V. B. Shenoy, ACS Appl. Mater. Interfaces 2014, 6, 11173; f) C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Adv. Sci. 2016, 3, 1600180.
- 163Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, A. Vojvodic, ACS Energy Lett. 2016, 1, 589.
- 164Z. Guo, J. Zhou, L. Zhu, Z. Sun, J. Mater. Chem. A 2016, 4, 11446.
- 165G. Gao, A. P. O'Mullane, A. Du, ACS Catal. 2017, 7, 494.
- 166a) W. Feng, J.-B. Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J.-C. Idrobo, L. Basile, J. Mater. Chem. C 2015, 3, 7022; b) Y. Hu, W. Feng, M. Dai, H. Yang, X. Chen, G. Liu, S. Zhang, P. Hu, Semicond. Sci. Technol. 2018, 33, 125002; c) S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, ACS Nano 2014, 8, 1263.
- 167a) P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, ACS Nano 2012, 6, 5988; b) P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, Nano Lett. 2013, 13, 1649.
- 168A. Huang, W. Shi, Z. Wang, J. Phys. Chem. C 2019, 123, 11388.