Nanocages of Polymeric Carbon Nitride from Low-Temperature Supramolecular Preorganization for Photocatalytic CO2 Reduction
Jiu Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Shaowen Cao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Jiaguo Yu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorJiu Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Shaowen Cao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Jiaguo Yu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 P. R. China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorAbstract
Polymeric carbon nitride (CN) is considered as one of the most promising photocatalysts to solve energy and environmental crises by solar-to-fuel conversion. However, the traditional thermal condensation of monomers usually leads to the disorganized agglomerate structure with a high recombination rate of electron–hole pairs. Herein, the effective synthesis of CN using supramolecular complexes of melamine and cyanuric acid with strengthened hydrogen bonding is presented, which are treated under freeze-drying conditions as precursors. The as-prepared CN exhibits a unique nanocage structure, which facilitates the scattering and reflection of incident light and improves the light-harvesting efficiency. The charge transfer and CO2 adsorption of CNs is improved because of the extended π-delocalization, conjugated aromatic system with more exposed lone-pair electrons and a relatively enlarged specific surface area, caused by the more stretchable and distorted structure of CNs. Consequently, the nanocage-like CN shows improved performance for photocatalytic CO2 reduction. This work provides a protocol for tailoring the microstructure of CNs via tuning the weak intermolecular interaction, with the aim of designing high-performance CN-based photocatalysts.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
solr201900469-sup-0001-SuppData-S1.doc3.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 2018, 30, 1704649; b) F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Adv. Funct. Mater. 2019, 29, 1904256.
- 2a) X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962; b) C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 2019, 31, 1902868.
- 3L. Zhang, C.-Y. Lin, D. Zhang, L. Gong, Y. Zhu, Z. Zhao, Q. Xu, H. Li, Z. Xia, Adv. Mater. 2019, 31, 1805252.
- 4Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Joule 2019, 3, 2792.
- 5a) Y. Zhao, G. I. N. Waterhouse, G. Chen, X. Xiong, L.-Z. Wu, C.-H. Tung, T. Zhang, Chem. Soc. Rev. 2019, 48, 1972; b) B. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B Environ. 2018, 224, 983.
- 6I. F. Teixeira, E. C. M. Barbosa, S. C. E. Tsang, P. H. C. Camargo, Chem. Soc. Rev. 2018, 47, 7783.
- 7a) Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chem. Soc. Rev. 2018, 47, 2298; b) T. Tong, B. He, B. Zhu, B. Cheng, L. Zhang, Appl. Surf. Sci. 2018, 459, 385.
- 8a) X. Wang, L. Wu, Z. Wang, H. Wu, X. Zhou, H. Ma, H. Zhong, Z. Xing, G. Cai, C. Jiang, Solar RRL 2019, 3, 1800298; b) B. Zhu, S. Wageh, A. A. Al-Ghamdi, S. Yang, Z. Tian, J. Yu, Catal. Today 2019, 335, 117.
- 9Y. Kang, Y. Yang, L.-C. Yin, X. Kang, L. Wang, G. Liu, H.-M. Cheng, Adv. Mater. 2016, 28, 6471.
- 10J. Xu, H. Wang, C. Zhang, X. Yang, S. Cao, J. Yu, M. Shalom, Angew. Chem. Int. Ed. 2017, 56, 8426.
- 11Y.-S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater. 2013, 23, 3661.
- 12T. Jordan, N. Fechler, J. Xu, T. J. K. Brenner, M. Antonietti, M. Shalom, ChemCatChem 2015, 7, 2826.
- 13J. Barrio, M. Shalom, ACS Appl. Mater. Interfaces 2018, 10, 39688.
- 14M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 2013, 135, 7118.
- 15Y.-S. Jun, J. Park, S. U. Lee, A. Thomas, W. H. Hong, G. D. Stucky, Angew. Chem. Int. Ed. 2013, 52, 11083.
- 16Q. Liang, Z. Li, X. Yu, Z.-H. Huang, F. Kang, Q.-H. Yang, Adv. Mater. 2015, 27, 4634.
- 17L. Yin, S. Wang, C. Yang, S. Lyu, X. Wang, ChemSusChem 2019, 12, 3320.
- 18G. M. Whitesides, J. P. Mathias, C. T. Seto, Science 1991, 254, 1312.
- 19L.-S. Teo, C.-Y. Chen, J.-F. Kuo, Macromolecules 1997, 30, 1793.
- 20R. C. Dougherty, J. Chem. Phys. 1998, 109, 7372.
- 21X. Hu, M. Vatankhah-Varnoosfaderani, J. Zhou, Q. Li, S. S. Sheiko, Adv. Mater. 2015, 27, 6899.
- 22T. Steiner, W. Saenger, Acta Cryst. 1994, B50, 348.
- 23T. Steiner, J. Phys. Chem. A 1998, 102, 7041.
- 24M. Ichikawa, J. Mol. Struct. 2000, 552, 63.
- 25J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel, G. Algara-Siller, M. Willinger, C. Yang, Y. Fu, X. Wang, M. Shalom, Appl. Catal. B Environ. 2017, 205, 1.
- 26S. Dolai, J. Barrio, G. Peng, A. Grafmuller, M. Shalom, Nanoscale 2019, 11, 5564.
- 27J. Barrio, M. Shalom, ChemCatChem 2018, 10, 5573.
- 28Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, J. Chen, Nano Energy 2014, 8, 157.
- 29D. Feng, Y. Cheng, J. He, L. Zheng, D. Shao, W. Wang, W. Wang, F. Lu, H. Dong, H. Liu, Carbon 2017, 125, 454.
- 30a) W. Cui, J. Li, W. Cen, Y. Sun, S. C. Lee, F. Dong, J. Catal. 2017, 352, 351; b) J. Song, X. Wang, J. Ma, X. Wang, J. Wang, J. Zhao, Appl. Catal. B Environ. 2018, 226, 83; c) P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, ACS Sustain. Chem. Eng. 2017, 6, 965.
- 31a) J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, Appl. Catal. B Environ. 2016, 183, 417; b) J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 2017, 13, 1303938.
- 32T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
- 33a) Y.-J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.-T. Yu, Z. Zou, Appl. Catal. B Environ. 2019, 246, 120; b) S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150.
- 34A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, T. J. White, J. Mater. Chem. 2004, 14, 2978.
- 35a) L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, L. Chen, Mater. Today 2019, 22, 76; b) W. Xing, C. Li, Y. Wang, Z. Han, Y. Hu, D. Chen, Q. Meng, G. Chen, Carbon 2017, 115, 486; c) Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Solar RRL 2018, 2, 1800006.
- 36a) K. C. Christoforidis, Z. Syrgiannis, V. L. Parola, T. Montini, C. Petit, E. Stathatos, R. Godin, J. R. Durrant, M. Prato, P. Fornasiero, Nano energy 2018, 50, 468; b) Z. Li, Y. Ma, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 2019, 40, 434.
- 37a) Y. Yang, M. Qiu, L. Li, Y. Pi, G. Yan, L. Yang, Solar RRL 2018, 2, 1800148; b) N. Nie, L. Zhang, J. Fu, B. Cheng, J. Yu, Appl. Surf. Sci. 2018, 441, 12.
- 38Y. Wang, Y. Li, S. Cao, J. Yu, Chin. J. Catal. 2019, 40, 867.
- 39a) Y. Xiong, Y. Chen, N. Yang, C. Jin, Q. Sun, Solar RRL 2019, 3, 1800341; b) P. Xia, B. Cheng, J. Jiang, H. Tang, Appl. Surf. Sci. 2019, 487, 335.
- 40D. Zheng, G. Zhang, Y. Hou, X. Wang, Appl. Catal. A 2016, 521, 2.
- 41Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, ACS Nano 2017, 11, 1103.
- 42W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Appl. Catal. B Environ. 2015, 179, 106.
- 43Y. Kang, Y. Yang, L.-C. Yin, X. Kang, G. Liu, H.-M. Cheng, Adv. Mater. 2015, 27, 4572.
- 44S. Kang, L. Zhang, M. He, Y. Zheng, L. Cui, D. Sun, B. Hu, Carbon 2018, 137, 19.
- 45J. Liu, C. Xiong, S. Jiang, X. Wu, S. Song, Appl. Catal. B Environ. 2019, 249, 282.
- 46Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M. G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Adv. Mater. 2017, 29, 1700555.
- 47G. Zhang, G. Li, Z.-A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2017, 56, 13445.
- 48a) W. Xing, C. Li, G. Chen, Z. Han, Y. Zhou, Y. Hu, Q. Meng, Appl. Catal. B Environ. 2017, 203, 65; b) Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Appl. Surf. Sci. 2019, 495, 143555.
- 49a) X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 2019, 59, 644; b) X. Yu, X. Fan, L. An, G. Liu, Z. Li, J. Liu, P. Hu, Carbon 2018, 128, 21; c) P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 2019, 29, 1900093.
- 50Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Appl. Surf. Sci. 2015, 358, 350.