Selective Nitrogen Doping at Hole Edges of Holey Graphene: Enhancing Ionic Transport Mechanisms for High-Performance Supercapacitors
John Peter Isaqu
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorChun-Wei Huang
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorJui-Kung Chih
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorBo Yan Huang
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorMohanapriya Subramani
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorI-Yu Tsao
Institute of Materials Science and Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorCorresponding Author
Bor Kae Chang
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ching Yuan Su
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Department of Mechanical Engineering, National Central University, Tao-Yuan, 32001 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorJohn Peter Isaqu
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorChun-Wei Huang
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorJui-Kung Chih
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorBo Yan Huang
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorMohanapriya Subramani
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorI-Yu Tsao
Institute of Materials Science and Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Search for more papers by this authorCorresponding Author
Bor Kae Chang
Department of Chemical and Materials Engineering, National Central University, Tao-Yuan, 32001 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ching Yuan Su
Graduate Institute of Energy Engineering, National Central University, Tao-Yuan, 32001 Taiwan
Department of Mechanical Engineering, National Central University, Tao-Yuan, 32001 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing highly holey graphene with controllable doping enhances ionic transport and conductivity, boosting the performance of energy storage devices like supercapacitors. However, the method for precise site-selective doping and the effects of heterogeneous atomic doping at pore edges on ion transport remain not fully understood. This study presents a method to achieve precisely and selectively high nitrogen doping (N-doping) at the hole edges of porous graphene (N-EHG) through a two-step process. Compared to untreated graphene (HG) and basal plane-doped graphene (N-BHG), N-EHG demonstrates superior charge storage capacity and ionic conductivity. Analyzing the porous structure, size distribution, and hydrophilicity influenced by the carbon–oxygen ratio, N-EHG shows a specific surface area of 509 m2 g−1, significantly higher than HG's 100 m2 g−1. Electrochemical results revealed that N-BHG and N-EHG achieved high gravimetric capacitances of 482.3 and 624.4 F g−1, respectively, due to enhanced ion diffusion, exceeding HG by ≈12- and 15.6-fold. Furthermore, the assembled coin-cell retains over 99% capacitance after 15,000 cycles, demonstrating exceptional stability. Both N-EHG and N-BHG show diffusion-governed charge storage, with N-EHG benefitting further from edge-state N-doping. Density Functional Theory (DFT) calculations reveal a lower energy barrier for ion diffusion and strong K⁺ adsorption on edge pyridinic-N, where increased electrode charge creates a negative center on N-dopants, enhancing K⁺ binding. These findings underscore the potential of edge-state N-doping in holey graphene for advanced energy storage applications.
Conflict Of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202402038-sup-0001-SuppMat.docx1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Dutta, S. Mitra, M. Basak, T. Banerjee, Energy Storage 2023, 5, 339.
- 2W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Adv. Sci. 2017, 4, 1600539.
- 3Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, J. Mater. Sci. 2021, 56, 173.
- 4J. Kim, H. Yu, J. Y. Jung, M. J. Kim, D. Jeon, H. S. Jeong, N. D. Kim, Adv. Funct. Mater. 2022, 32, 2113057.
- 5A. Amiri, K. Bashandeh, M. Naraghi, A. A. Polycarpou, Chem. Eng. J. 2021, 409, 128124.
- 6H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, Y. Li, Y. Zhang, Y. Wang, Z. Wu, H. Cheng, Adv. Funct. Mater. 2020, 30, 1909035.
- 7S. Wei, C. Wan, X. Li, J. Su, W. Cheng, H. Chai, Y. Wu, iScience 2023, 26, 105964.
- 8G. G. Bizuneh, A. M. M. Adam, J. Ma, Batter. Energy 2023, 2, 20220021.
- 9S. Yadav, A. P. Singh Raman, H. Meena, A. G. Goswami, Bhawna, V. K, P. Jain, G. Kumar, M. Sagar, D. K. Rana, I. Bahadur, P. Singh, ACS Omega 2022, 7, 35387.
- 10Y. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805.
- 11P. Zang, S. Gao, L. Dang, Z. Liu, Z. Lei, Electrochim. Acta 2016, 212, 171.
- 12N. S. Rajput, S. Al Zadjali, M. Gutierrez, A. M. K. Esawi, M. Al Teneiji, RSC Adv. 2021, 11, 27381.
- 13H. Wang, L. Su, M. Yagmurcukardes, J. Chen, Y. Jiang, Z. Li, A. Quan, F. M. Peeters, C. Wang, A. K. Geim, S. Hu, Nano Lett. 2020, 20, 8634.
- 14A. C. Lokhande, I. A. Qattan, C. D. Lokhande, S. P. Patole, J. Mater. Chem. A 2020, 8, 918.
- 15H. M. Hegab, P. Kallem, R. P. Pandey, M. Ouda, F. Banat, S. W. Hasan, Chem. Eng. J. 2022, 431, 134248.
- 16Y. Tao, Z.-Y. Sui, B.-H. Han, J. Mater. Chem. A 2020, 8, 6125.
- 17N. Chang, C. Zhou, H. Fu, Y. Zhao, J. Shui, Adv. Mater. Interfaces 2017, 4, 1700783.
- 18A.-K. Lu, H.-Y. Li, Y. Yu, J. Mater. Chem. A 2019, 7, 7852.
- 19J. P. Sutarsis, C.-Y. Su, J. Li, D. Bresser, S. Passerini, J.-K. Chang, ACS Appl. Mater. Interfaces 2020, 12, 32797.
- 20M. Khandelwal, C. Van Tran, J. Lee, J. Bin In, Chem. Eng. J. 2022, 428, 131119.
- 21F. Heidari Gourji, D. Velauthapillai, M. Keykhaei, Energy Reports 2022, 8, 7712.
10.1016/j.egyr.2022.06.008 Google Scholar
- 22E. Narayanamoorthi, N. S. K. Gowthaman, S. A. John, K. P. Elango, J. Mol. Struct. 2024, 1295, 136659.
- 23J. Choi, A. Jin, H. D. Jung, D. Ko, J. H. Um, Y. J. Choi, S. H. Kim, S. Back, S.-H. Yu, Y. Piao, Energy Storage Mater. 2022, 48, 325.
- 24F. Xu, Y. Zhai, E. Zhang, Q. Liu, G. Jiang, X. Xu, Y. Qiu, X. Liu, H. Wang, S. Kaskel, Angew. Chem., Int. Ed. 2020, 59, 19460.
- 25C. Zhang, X. Liu, Z. Li, C. Zhang, Z. Chen, D. Pan, M. Wu, Adv. Funct. Mater. 2021, 31, 2101470.
- 26N. M. Santhosh, G. Filipič, E. Kovacevic, A. Jagodar, J. Berndt, T. Strunskus, H. Kondo, M. Hori, E. Tatarova, U. Cvelbar, Nano-Micro Lett. 2020, 12, 53.
- 27H. Sun, Q. Wang, T. Wu, Y. Miao, Y. Fang, Appl. Surf. Sci. 2020, 527, 146574.
- 28X. Li, B. Zhang, X. Yan, Y. Zhang, X. Deng, S. Zhang, Catal. Today 2019, 337, 97.
- 29N. Xiao, H. Tan, J. Zhu, L. Tan, X. Rui, X. Dong, Q. Yan, ACS Appl. Mater. Interfaces 2013, 5, 9656.
- 30M. Jindra, M. Velický, M. Bouša, G. Abbas, M. Kalbáč, O. Frank, J. Phys. Chem. Lett. 2022, 13, 642.
- 31Y. J. Choi, G. W. Lee, Y. H. Kim, H.-K. Kim, K.-B. Kim, Chem. Eng. J. 2022, 432, 134260.
- 32P. Yuan, X. Luo, S. Li, H. Xiao, J. Li, J. Luo, Y. Chen, D. Chen, D. Li, ACS Appl. Nano Mater. 2023, 6, 13304.
- 33D. Dutta, J.-Y. Jiang, A. Jamaluddin, S.-M. He, Y.-H. Hung, F. Chen, J.-K. Chang, C.-Y. Su, ACS Appl. Mater. Interfaces 2019, 11, 36560.
- 34H. P. Boehm, G. Mair, T. Stoehr, A. R. De Rincón, B. Tereczki, Fuel 1984, 63, 1061.
- 35X.-F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Sci. Rep. 2016, 6, 23495.
- 36N. P. Sari, D. Dutta, A. Jamaluddin, J.-K. Chang, C.-Y. Su, Phys. Chem. Chem. Phys. 2017, 19, 30381.
- 37M.-Y. Qi, Y. Zhang, Q. Li, L. Wu, B. Zhou, Z. Wang, Z.-H. Huang, M.-X. Wang, Chem. Eng. J. 2023, 474, 145823.
- 38S. Chauque, A. H. Braga, R. V. Gonçalves, L. M. Rossi, R. M. Torresi, ChemElectroChem 2020, 7, 1456.
- 39L. Jiang, X. Mei, D. Gan, S. Song, X. Lei, F. Cai, Y. Wang, Q. Zhang, X. Lu, Z. Ren, Chem. – A Eur. J. 2021, 27, 5761.
- 40H. Wang, Q. He, F. Zhan, L. Chen, J. Colloid Interface Sci. 2023, 630, 286.
- 41J. Li, L. Wang, Y. Yang, B. Wang, C. Duan, L. Zheng, R. Li, Y. Wei, J. Xu, Z. Yin, Nanotechnology 2021, 32, 505710.
- 42H. Kuang, H. Zhang, X. Liu, Y. Chen, W. Zhang, H. Chen, Q. Ling, Carbon N. Y. 2022, 190, 57.
- 43Z. Chen, S. Zhao, H. Zhao, Y. Zou, C. Yu, W. Zhong, Chem. Eng. J. 2021, 409, 127891.
- 44F. Ran, X. Yang, X. Xu, S. Li, Y. Liu, L. Shao, Chem. Eng. J. 2021, 412, 128673.
- 45T. Chen, L. Luo, L. Luo, J. Deng, X. Wu, M. Fan, G. Du, W. Zhao, Renew. Energy 2021, 175, 760.
- 46Y. Hu, K. Xie, H. Wang, C. Yuan, B. Cao, L. Qian, S. Wang, F. Fazeli Zafar, K. Ding, Q. Wang, J. Anal. Appl. Pyrolysis 2021, 157, 105221.
- 47C. Fan, Y. Tian, S. Bai, C. Zhang, X. Wu, J. Energy Storage 2021, 44, 103492.
- 48R. Atchudan, T. N. Jebakumar Immanuel Edison, S. Perumal, R. Vinodh, R. S. Babu, A. K. Sundramoorthy, A. A. Renita, Y. R. Lee, Chemosphere 2022, 289, 133225.
- 49P. Li, W. Wang, F. Su, X. Wang, X. Zhang, X. Zheng, J. Alloys Compd. 2022, 893, 162218.
- 50Y. Zhang, F. Deng, Q. Zhang, B. Xing, J. Shang, J. Lin, J. Energy Storage 2022, 55, 105494.
- 51K. Li, D. Nan, Z. Li, J. Xie, S. Ma, Y. Huang, Q. Lu, J. Energy Storage 2023, 57, 106219.
- 52S. Wu, X. Yan, X. Sun, S. Tian, J. Wang, C. Liu, S. Sun, L. Wu, X. Zhao, Q. Yang, J. Energy Storage 2023, 71, 108152.
- 53J. Peng, X. Dai, J. Huang, J. Zeng, L. Zheng, H. Chen, J. Energy Storage 2023, 59, 106498.
- 54Y. Wang, J. Xiao, H. Wang, T. C. Zhang, S. Yuan, Chem. – A Eur. J. 2021, 27, 7908.
- 55W. Wang, J. Yan, J. Liu, D. Ou, Q. Qin, B. Lan, Y. Ning, D. Zhou, Y. Wu, Electrochim. Acta 2018, 282, 835.
- 56A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Nano-Micro Lett. 2023, 15, 100.
- 57Y. Yamada, J. Kim, S. Matsuo, S. Sato, Carbon N. Y. 2014, 70, 59.
- 58C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon, C.-Y. Su, Nanoscale 2015, 7, 15362.
- 59Y. Y. Sin, S. W. Hsiao, J. P. Isaqu, P.-S. Chen, J. S.-C. Jang, C. Y. Su, Carbon N. Y. 2024, 228, 119368.
- 60M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter 2002, 14, 2717.
- 61S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Zeitschrift für Krist. – Cryst. Mater. 2005, 220, 567.
- 62J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 63H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 64S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 65S. G. Bratsch, J. Chem. Educ. 1988, 65, 34.
- 66R. S. Mulliken, J. Chem. Phys. 1934, 2, 782.