Measurement of Anisotropic Exciton Transport Lengths in Organic Crystals Using Photoetching
Yangyang Ren
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChenglong Liao
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYanxue Che
HT-NOVA Co., Ltd, Zhuyuan Road, Shunyi District, Beijing, 101312 China
Search for more papers by this authorHongwei Ji
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yanjun Gong
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ling Zang
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanke Che
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJincai Zhao
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYangyang Ren
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChenglong Liao
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYanxue Che
HT-NOVA Co., Ltd, Zhuyuan Road, Shunyi District, Beijing, 101312 China
Search for more papers by this authorHongwei Ji
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yanjun Gong
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ling Zang
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanke Che
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJincai Zhao
Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Measuring anisotropic exciton transport in organic crystals goes beyond just assessing one-dimensional (1D) transport. It offers a deeper understanding of how molecular packing and interactions affect exciton transport in different dimensions. However, achieving nanoscale precision in measuring anisotropic exciton transport lengths and linking them to specific crystalline directions remains a formidable challenge. Here the development of a photoetching method is reported to visualize the exciton transport distances as gaps within two-dimensional (2D) crystals, which in turn allows for the use of a scanning electron microscope (SEM) to precisely measure the sizes. The photoetching method combined with hetero-seeded self-assembly enables the use of conventional fluorescence spectrometry for precise determination of anisotropic exciton transport lengths in 2D structures at the nanoscale. Relying on this novel method, It is unexpectedly found that increasing intermolecular interactions in one crystal direction not only improves exciton transport in that dimension but also enhances exciton transport in the other dimension. These findings provide valuable insights for engineering organic materials that require efficient exciton transport across extended distances.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202503430-sup-0001-SuppMat.docx5.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M. Kepenekian, C. M. M. Soe, K. Appavoo, M. Y. Sfeir, S. Tretiak, P. M. Ajayan, M. G. Kanatzidis, J. Even, J. J. Crochet, A. D. Mohite, Science 2017, 355, 1288; b) K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. X. Peng, W. Kaminsky, S. H. Jang, J. W. Yu, X. Deng, H. W. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. F. Zhang, A. K. Y. Jen, Nat. Energy 2022, 7, 1076; c) A. Classen, C. L. Chochos, L. Luer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 2020, 5, 711; d) J. C. J. Li, Q. Li, R. Wang, Z. G. Zhang, X. Y. Wang, M. Xiao, Y. Q. Lu, C. F. Zhang, J. Am. Chem. Soc. 2024, 146, 20312; e) Y. Boeije, W. T. M. Van Gompel, Y. C. Zhang, P. Ghosh, S. J. Zelewski, A. Maufort, B. Roose, Z. Y. Ooi, R. Chowdhury, I. Devroey, S. Lenaers, A. Tew, L. J. Dai, K. Dey, H. Salway, R. H. Friend, H. Sirringhaus, L. Lutsen, D. Vanderzande, A. K. Rao, S. D. Stranks, J. Am. Chem. Soc. 2023, 145, 21330; f) Y. H. Cai, Q. Li, G. Y. Lu, H. S. Ryu, Y. Li, H. Jin, Z. H. Chen, Z. Tang, G. H. Lu, X. T. Hao, H. Y. Woo, C. F. Zhang, Y. M. Sun, Nat. Commun. 2022, 13, 2369.
- 2a) J. M. Chen, Y. Y. Chen, J. Liu, S. Y. Feng, W. Huang, Y. Ling, Y. Dong, W. G. Huang, J. Am. Chem. Soc. 2024, 146, 2604; b) A. Concellón, J. Castro-Esteban, T. M. Swager, J. Am. Chem. Soc. 2023, 145, 11420; c) A. Concellón, T. M. Swager, Angew. Chem., Int. Ed. 2023, 62, 202309928; d) C. Q. Cheng, Y. J. Gong, Y. X. Guo, L. F. Cui, H. W. Ji, H. Yuan, L. Jiang, J. C. Zhao, Y. K. Che, Angew. Chem., Int. Ed. 2021, 60, 5827; e) W. Xiong, Y. J. Gong, Y. K. Che, J. C. Zhao, Anal. Chem. 2019, 91, 1711.
- 3a) D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, A. Kis, Nature 2018, 560, 340; b) E. Romero, V. I. Novoderezhkin, R. van Grondelle, Nature 2017, 543, 355; c) T. Mirkovic, E. E. Ostroumov, J. M. Anna, R. van Grondelle, G. D. S. Govindjee, Chem. Rev. 2017, 117, 249; d) X. Zhou, H. Liu, F. Djutanta, D. Satyabola, S. X. Jiang, X. D. Qi, L. Yu, S. Lin, R. F. Hariadi, Y. Liu, N. W. Woodbury, H. Yan, Chem 2022, 8, 2442; e) S. Chandrabose, K. Chen, A. J. Barker, J. J. Sutton, S. K. K. Prasad, J. S. Zhu, J. D. Zhou, K. C. Gordon, Z. Q. Xie, X. W. Zhan, J. M. Hodgkiss, J. Am. Chem. Soc. 2019, 141, 6922.
- 4a) O. P. Dimitriev, Chem. Rev. 2022, 122, 8487; b) S. F. Wang, B. K. Su, X. Q. Wang, Y. C. Wei, K. H. Kuo, C. H. Wang, S. H. Liu, L. S. Liao, W. Y. Hung, L. W. Fu, W. T. Chuang, M. C. Qin, X. H. Lu, C. F. You, Y. Chi, P. T. Chou, Nat. Photonics 2022, 16, 843; c) Y. C. Liu, F. L. Dai, H. K. Bai, X. Y. Fan, R. Q. Wang, X. Z. Zheng, Z. Z. Xiong, H. C. Sun, Z. J. Liang, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2024, 146, 14593; d) Y. Firdaus, V. M. Le Corre, S. Karuthedath, W. L. Liu, A. Markina, W. T. Huang, S. Chattopadhyay, M. M. Nahid, M. I. Nugraha, Y. B. Lin, A. Seitkhan, A. Basu, W. M. Zhang, I. McCulloch, H. Ade, J. Labram, F. Laquai, D. Andrienko, L. J. A. Koster, T. D. Anthopoulos, Nat. Commun. 2020, 11, 5220.
- 5a) J. A. Tulyagankhodjaev, P. Shih, J. Yu, J. C. Russell, D. G. Chica, M. E. Reynoso, H. W. Su, A. C. Stenor, X. Roy, T. C. Berkelbach, M. Delor, Science 2023, 382, 438; b) A. M. Evans, L. R. Parent, N. C. Flanders, R. P. Bisbey, E. Vitaku, M. S. Kirschner, R. D. Schaller, L. X. Chen, N. C. Gianneschi, W. R. Dichtel, Science 2018, 361, 52; c) A. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Köhler, H. W. Schmidt, R. Hildner, Nature 2015, 523, 196; d) X. H. Jin, M. B. Price, J. R. Finnegan, C. E. Boott, J. M. Richter, A. Rao, M. Menke, R. H. Friend, G. R. Whittell, I. Manners, Science 2018, 360, 897; e) Z. L. Zhang, J. Sung, D. T. W. Toolan, S. Y. Han, R. Pandya, M. P. Weir, J. Xiao, S. Dowland, M. X. Liu, A. J. Ryan, R. A. L. Jones, S. J. Huang, A. Rao, Nat. Mater. 2022, 21, 533; f) S. C. Zhang, L. R. Jin, Y. Lu, L. H. Zhang, J. Q. Yang, Q. C. Zhao, D. W. Sun, J. J. P. Thompson, B. Yuan, K. Ma, J. Y. Park, Y. H. Lee, Z. T. Wei, B. P. Finkenauer, D. D. Blach, S. Kumar, H. L. Peng, A. Mannodi-Kanakkithodi, Y. Yu, E. Malic, G. Lu, L. T. Dou, L. B. Huang, Nat. Mater. 2024, 23, 1222; g) Y. Wan, Z. Guo, T. Zhu, S. X. Yan, J. Johnson, L. B. Huang, Nat. Chem. 2015, 7, 785; h) N. C. Flanders, M. S. Kirschner, P. Kim, T. J. Fauvell, A. M. Evans, W. Helweh, A. P. Spencer, R. D. Schaller, W. R. Dichtel, L. X. Chen, J. Am. Chem. Soc. 2020, 142, 14957; i) A. J. Sneyd, D. Beljonne, A. K. Rao, J. Phys. Chem. Lett. 2022, 13, 6820; j) Q. Y. Wan, D. A. Li, J. D. Zou, T. F. Yan, R. D. Zhu, K. Xiao, S. Yue, X. D. Cui, Y. X. Weng, C. M. Che, Angew. Chem., Int. Ed. 2022, 61, 202114323.
- 6T. Brixner, R. Hildner, J. Köhler, C. Lambert, F. Würthner, Adv. Energy Mater. 2017, 7, 1700236.
- 7a) M. Delor, H. L. Weaver, Q. Q. Yu, N. S. Ginsberg, Nat. Mater. 2020, 19, 56; b) P. Irkhin, I. Biaggio, Phys. Rev. Lett. 2011, 107, 017402; c) L. Yuan, B. Y. Zheng, Q. C. Zhao, R. Kempt, T. Brumme, A. B. Kuc, C. Ma, S. B. Deng, A. L. Pan, L. B. Huang, ACS Nano 2023, 17, 15379; d) G. M. Akselrod, P. B. Deotare, N. J. Thompson, J. Lee, W. A. Tisdale, M. A. Baldo, V. M. Menon, V. Bulovic, Nat. Commun. 2014, 5, 3646.
- 8a) H. B. Qiu, Y. Gao, C. E. Boott, O. E. C. Gould, R. L. Harniman, M. J. Miles, S. E. D. Webb, M. A. Winnik, I. Manners, Science 2016, 352, 697; b) Z. M. Hudson, C. E. Boott, M. E. Robinson, P. A. Rupar, M. A. Winnik, I. Manners, Nat. Chem. 2014, 6, 893; c) N. Sasaki, J. Kikkawa, Y. Ishii, T. Uchihashi, H. Imamura, M. Takeuchi, K. Sugiyasu, Nat. Chem. 2023, 15, 922; d) Z. Z. Tong, Y. J. Xie, M. C. Arno, Y. F. Zhang, I. Manners, R. K. O'Reilly, A. P. Dove, Nat. Chem. 2023, 15, 824; e) A. K. Pearce, T. R. Wilks, M. C. Arno, R. K. O'Reilly, Nat. Rev. Chem. 2021, 5, 21; f) L. P. F. Liu, T. J. C., L. Y. Zhu, S. C. Chen, R. Y. Wang, S. Wang, P. A. Dove, R. K. O'Reilly, Z. Z. Tong, Nat. Synth. 2024, 3, 903; g) Y. J. Gong, C. Q. Cheng, H. W. Ji, Y. K. Che, L. Zang, J. C. Zhao, Y. F. Zhang, J. Am. Chem. Soc. 2022, 144, 15403; h) Y. Liu, C. Peng, W. Xiong, Y. F. Zhang, Y. J. Gong, Y. K. Che, J. C. Zhao, Angew. Chem., Int. Ed. 2017, 56, 11380; i) T. L. Xia, Z. Z. Tong, Y. J. Xie, M. C. Arno, S. X. Lei, L. H. Xiao, J. Y. Rho, C. T. J. Ferguson, I. Manners, A. P. Dove, R. K. O'Reilly, J. Am. Chem. Soc. 2023, 145, 25274.
- 9C. L. Liao, Y. J. Gong, Y. X. Che, H. W. Ji, B. Liu, L. Zang, Y. K. Che, J. C. Zhao, Nat. Commun. 2024, 15, 5668.
- 10C. L. Liao, Y. J. Gong, Y. X. Che, L. F. Cui, Y. X. Liu, H. W. Ji, Y. F. Zhang, L. Zang, J. C. Zhao, Y. K. Che, Chem-Eur J 2023, 29.
- 11J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair, P. Rebentrost, S. Lloyd, M. G. Bawendi, Nano Lett. 2016, 16, 6808.
- 12a) C. J. Lin, T. Kim, J. D. Schultz, R. M. Young, M. R. Wasielewski, Nat. Chem. 2022, 14, 786; b) R. M. Young, M. R. Wasielewski, Acc. Chem. Res. 2020, 53, 1957; c) C. L. Taeyeon Kim, J. D. Schultz, R. M. Young, M. R. Wasielewski, J. Am. Chem. Soc. 2022, 144, 11386; d) J. M. Fisher, M. L. Williams, J. R. Palmer, N. E. Powers-Riggs, R. M. Young, M. R. Wasielewski, J. Am. Chem. Soc. 2024, 146, 9911.