Unraveling the Synergy of Interfacial Engineering in In Situ Prepared NiO/NdNiO3 for ppb-Level SO2 Sensing: Mechanistic and First-Principles Insights
Corresponding Author
Vishnu G Nath
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorShalini Tomar
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Search for more papers by this authorNikhil N. Rao
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104 India
Search for more papers by this authorMuhammed Safeer Naduvil Kovilakath
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Search for more papers by this authorNeena S. John
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Search for more papers by this authorSatadeep Bhattacharjee
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Search for more papers by this authorSeung-Cheol Lee
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Electronic Materials Research Center, Korea Institute of Science & Technology (KIST), Seoul, 130–650 South Korea
Search for more papers by this authorCorresponding Author
Angappane Subramanian
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Vishnu G Nath
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorShalini Tomar
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Search for more papers by this authorNikhil N. Rao
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104 India
Search for more papers by this authorMuhammed Safeer Naduvil Kovilakath
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Search for more papers by this authorNeena S. John
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
Search for more papers by this authorSatadeep Bhattacharjee
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Search for more papers by this authorSeung-Cheol Lee
Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064 India
Electronic Materials Research Center, Korea Institute of Science & Technology (KIST), Seoul, 130–650 South Korea
Search for more papers by this authorCorresponding Author
Angappane Subramanian
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Interfacial engineering of semiconductor metal oxides offers a plethora of features to overcome the limitations of chemiresistive gas sensors, thereby increasing their practical viability. Herein, the SO2 sensing characteristics of NiO are modulated through the incorporation of NdNiO3, via a facile in situ synthesis of NiO/NdNiO3 nanostructures that significantly enhance the sensor performance. To this end, systematic control of the Nd/Ni molar ratio is employed during the synthesis of NiO/NdNiO3, enabling the regulation of structural properties and interfacial interactions. The optimized NiO/NdNiO3-based sensor demonstrates superior SO2 detection at 140 °C, outperforming pristine NiO, owing to tunable charge carrier dynamics at the heterointerface during gas adsorption. The sensor showcases an extensive dynamic response range from 450 ppb to 200 ppm and an impressive detection limit (320 ppb), along with remarkable selectivity and excellent stability. First-principles calculations reveal NiO and NdNiO3 play distinct roles in SO2 adsorption, with NiO functioning as the receptor, selectively interacting with SO2 through dissociated oxygen, and NdNiO3 serving as the transducer, facilitating signal conversion by inhibiting oxygen dissociation. Additionally, the designed portable, threshold-triggered sensor prototype, integrating the developed NiO/NdNiO3 sensor with enhanced SO2 detection, presents a promising avenue for applications in industrial and environmental monitoring.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202502192-sup-0001-SuppMat.pdf19 MB | Supporting Information |
smll202502192-sup-0002-VideoS1.mp437 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Sharma, S. B. Eadi, H. Noothalapati, M. Otyepka, H. D. Lee, K. Jayaramulu, Chem. Soc. Rev. 2024, 53, 2530.
- 2P. Najafi, A. Ghaemi, Chem. Eng. J. 2024, 498, 154999.
- 3G. W. Fuller, A. Font, Science 2019, 365, 322.
- 4I. C. Dedoussi, S. D. Eastham, E. Monier, S. R. H. Barrett, Nature 2020, 578, 261.
- 5M. Guarnieri, J. R. Balmes, Lancet 2014, 383, 1581.
- 6L. Cao, L. Yu, S. Li, N. Nan, C. Zhang, X. Fan, Appl. Surf. Sci. 2024, 646, 158899.
- 7C. A. McLinden, V. Fioletov, M. W. Shephard, N. Krotkov, C. Li, R. V. Martin, M. D. Moran, J. Joiner, Nat. Geosci. 2016, 9, 496.
- 8Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Mater. Horiz. 2019, 6, 470.
- 9H. Ji, W. Zeng, Y. Li, Nanoscale 2019, 11, 22664.
- 10J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 2016, 28, 795.
- 11S. Yang, C. Jiang, S. huai Wei, Appl. Phys. Rev. 2017, 4, 21304.
- 12Q. Li, W. Zeng, Y. Li, Sens. Actuators, B 2022, 359, 131579.
- 13G. Jung, S. Ju, K. Choi, J. Kim, S. Hong, J. Park, W. Shin, Y. Jeong, S. Han, W. Y. Choi, J. H. Lee, ACS Nano 2023, 17, 17790.
- 14D. Degler, U. Weimar, N. Barsan, ACS Sens. 2019, 4, 2228.
- 15V. Postica, A. Vahl, J. Strobel, D. Santos-Carballal, O. Lupan, A. Cadi-Essadek, N. H. De Leeuw, F. Schütt, O. Polonskyi, T. Strunskus, M. Baum, L. Kienle, R. Adelung, F. Faupel, J. Mater. Chem. A 2018, 6, 23669.
- 16V. S. Bhati, M. Kumar, R. Banerjee, J. Mater. Chem. C 2021, 9, 8776.
- 17E. Lee, Y. S. Yoon, D. J. Kim, ACS Sens. 2018, 3, 2045.
- 18S. Ma, J. Xu, J. Mater. Chem. A 2023, 11, 23742.
- 19L. Liu, P. Zhou, X. Su, Y. Liu, Y. Sun, H. Yang, H. Fu, X. Qu, S. Liu, S. Zheng, Sens. Actuators, B 2022, 351, 130983.
- 20N. K. Das, W. A. Saidi, J. Chem. Phys. 2017, 146, 154701.
- 21P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Sens. Actuators, B 2017, 248, 998.
- 22N. Kaur, ACS Sens. 2025, 10, 1641.
- 23Y. Fu, J. Li, H. Xu, Mater. Sci. Semicond. Process. 2020, 114, 105073.
- 24Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, Sens. Actuators, B 2019, 298, 126870.
- 25X. Xu, L. Li, J. Huang, H. Jin, X. Fang, W. Liu, N. Zhang, H. Wang, X. Wang, ACS Catal. 2018, 8, 8033.
- 26Y. C. Zhang, C. Han, J. Gao, J. Wu, X. D. Zhu, J. J. Zou, Chem. Eng. J. 2022, 446, 137036.
- 27Y. Zhang, M. Yang, J. Du, L. Yang, L. Fan, X. Liu, J. Yang, F. Wang, Electrochim. Acta. 2019, 319, 41.
- 28A. Boileau, F. Capon, R. Coustel, P. Laffez, S. Barrat, J. F. Pierson, J. Phys. Chem. C 2017, 121, 21579.
- 29N. N. Rao, C. Alex, M. Mukherjee, S. Roy, A. Tayal, A. Datta, N. S. John, ACS Catal. 2024, 14, 981.
- 30U. Holzwarth, N. Gibson, Nat. Nanotechnol. 2011, 6, 534.
- 31K. Chang, W. Feng, L. Q. Chen, Acta. Mater. 2009, 57, 5229.
- 32R. H. R. Castro, Curr. Opin. Solid State Mater. Sci. 2021, 25, 100911.
- 33K. L. Nardi, N. Yang, C. F. Dickens, A. L. Strickler, S. F. Bent, Adv. Energy Mater. 2015, 5, 1500412.
- 34Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACS Appl. Mater. Interfaces 2020, 12, 21661.
- 35W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z. B. He, Adv. Energy Mater. 2018, 8, 1703519.
- 36T. Kou, M. Chen, F. Wu, T. J. Smart, S. Wang, Y. Wu, Y. Zhang, S. Li, S. Lall, Z. Zhang, Y. S. Liu, J. Guo, G. Wang, Y. Ping, Y. Li, Nat. Commun. 2020, 11, 590.
- 37C. Hu, X. Wang, T. Yao, T. Gao, J. Han, X. Zhang, Y. Zhang, P. Xu, B. Song, Adv. Funct. Mater. 2019, 29, 1902449.
- 38R. H. R. Castro, P. Hidalgo, R. Muccillo, D. Gouvêa, Appl. Surf. Sci. 2003, 214, 172.
- 39K. Michalec, B. Mozgawa, A. Kusior, P. Pietrzyk, Z. Sojka, M. Radecka, J. Phys. Chem. C 2024, 128, 5011.
- 40R. Appiah-Ntiamoah, A. F. Baye, B. T. Gadisa, M. W. Abebe, H. Kim, J. Hazard. Mater. 2019, 373, 459.
- 41K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, ACS Appl. Mater. Interfaces 2015, 7, 11359.
- 42K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
- 43N. N. Marei, N. N. Nassar, G. Vitale, J. Phys. Chem. C 2016, 18, 6839.
- 44Z. Dai, T. Liang, J. H. Lee, Nanoscale Adv. 2019, 1, 1626.
- 45K. Gelderman, L. Lee, S. W. Donne, J. Chem. Educ. 2007, 84, 685.
- 46B. A. Nail, J. M. Fields, J. Zhao, J. Wang, M. J. Greaney, R. L. Brutchey, F. E. Osterloh, ACS Nano 2015, 9, 5135.
- 47D. Han, P. Song, S. Zhang, H. Zhang, Q. Xu, Q. Wang, Sens. Actuators, B 2015, 216, 488.
- 48V. G. Nath, S. Ray, J. D. Rodney, S. Prakasha Bharath, S. Roy, K. Tarafder, A. Subramanian, B. Chul Kim, Chem. Eng. J. 2024, 490, 151873.
- 49J. Yang, W. Han, B. Jiang, X. Wang, Y. Sun, W. Wang, R. Lou, H. Ci, H. Zhang, G. Lu, ACS Sens. 2022, 7, 995.
- 50D. Kohl, J. Phys. D. Appl. Phys. 2001, 34, R125.
- 51J. Chu, Q. Wang, A. Yang, J. Pan, Y. Liu, H. Yuan, M. Rong, X. Wang, Sens. Actuators B. Chem. 2023, 375, 132929.
- 52G. L. Long, J. D. Winefordner, Anal. Chem. 1983, 55, 1432.
- 53H. Zhang, L. Yu, R. Li, F. Zhao, L. Guo, P. hong Wang, W. Cao, Z. jun Ding, Z. Qiao, Sens. Actuators, B 2024, 409, 135629.
- 54L. Zhao, X. Li, C. Hao, C. L. Raston, Appl. Catal. B. 2012, 117–118, 339.
- 55B. Q. Jiang, Z. B. Wu, Y. Liu, S. C. Lee, W. K. Ho, J. Phys. Chem. C. 2010, 114, 4961.
- 56M. B. Padley, C. H. Rochester, G. J. Hutchings, F. King, J. Catal. 1994, 148, 438.
- 57G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 58E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 59J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 60H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 61V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 62R. F. W. Bader, Chem. Rev. 1991, 91, 893.