Solid-State Photoluminescent Imine-Linked Two-Dimensional Covalent Organic Frameworks
Changsheng Du
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorWenjing Na
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
Search for more papers by this authorHaojie Huang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYunqi Liu
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Jianyi Chen
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]
Search for more papers by this authorChangsheng Du
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorWenjing Na
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 P. R. China
Search for more papers by this authorHaojie Huang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYunqi Liu
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Jianyi Chen
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The development of efficient solid-state luminescent covalent organic frameworks (COFs) is crucial for advancing applications in sensing, imaging, and optoelectronics. However, achieving high photoluminescent quantum yields (PLQY) in imine-linked COFs remains challenging due to the presence of complex nonradiative quenching pathways. Here, the design and synthesis of a novel series of solid-state photoluminescent imine-linked 2D covalent organic frameworks (2D COFs) are reported through condensation of rigid building blocks. These COFs display high crystallinity and porosity, and with a remarkable PLQY of up to 39% in the solid state. The high luminescent efficiency is attributed to the donor–acceptor–donor structure within the aldehyde moieties, which facilitates selective charge transfer excitation between the donor moiety, triphenylamine, and the acceptor moiety, benzothiadiazole, bypassing the imine bonds, suppressing nonradiative quenching pathways associated with imine bond rotation in the excited states. Furthermore, the obtained COF shows potential for bioimaging applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202501607-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
smll202501607-sup-0002-VideoS1.avi406.9 KB | Supplementary Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Xu, Q. Zhang, Mater. Today Energy 2021, 20, 100635; b) C. Wang, Z. Zhang, Y. Zhu, C. Yang, J. Wu, W. Hu, Adv. Mater. 2022, 34, 2102290; c) W. K. Haug, E. M. Moscarello, E. R. Wolfson, P. L. McGrier, Chem. Soc. Rev. 2020, 49, 839.
- 2a) Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Nano-Micro Lett. 2023, 16, 37; b) Y. Cheng, J. Xin, L. Xiao, X. Wang, X. Zhou, D. Li, B. Gui, J. Sun, C. Wang, J. Am. Chem. Soc. 2023, 145, 18737.
- 3M. Yuan, F. Ma, X. Dai, L. Chen, F. Zhai, L. He, M. Zhang, J. Chen, J. Shu, X. Wang, X. Wang, Y. Zhang, X. Fu, Z. Li, C. Guo, L. Chen, Z. Chai, S. Wang, Angew. Chem., Int. Ed. 2021, 60, 21250.
- 4a) K. Wang, Z. Zhang, L. Lin, K. Hao, J. Chen, H. Tian, X. Chen, ACS Appl. Mater. Interfaces 2019, 11, 39503; b) L. Zhang, A. Song, Q.-C. Yang, S.-J. Li, S. Wang, S.-C. Wan, J. Sun, R. T. K. Kwok, J. W. Y. Lam, H. Deng, B. Z. Tang, Z.-J. Sun, Nat. Commun. 2023, 14, 5355; c) L. Zhang, S.-C. Wan, J. Zhang, M.-J. Zhang, Q.-C. Yang, B. Zhang, W.-Y. Wang, J. Sun, R. T. K. Kwok, J. W. Y. Lam, H. Deng, Z.-J. Sun, B. Z. Tang, J. Am. Chem. Soc. 2023, 145, 17689.
- 5S. Jindal, J.-X. Wang, Y. Wang, S. Thomas, A. Mallick, M. Bonneau, P. M. Bhatt, O. Alkhazragi, I. Nadinov, T. K. Ng, O. Shekhah, H. N. Alshareef, B. S. Ooi, O. F. Mohammed, M. Eddaoudi, J. Am. Chem. Soc. 2024, 146, 25536.
- 6a) S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem., Int. Ed. 2009, 48, 3207; b) N. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, Angew. Chem., Int. Ed. 2015, 54, 8704; c) S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem., Int. Ed. 2009, 48, 5439; d) J. W. Crowe, L. A. Baldwin, P. L. McGrier, J. Am. Chem. Soc. 2016, 138, 10120; e) S. Dalapati, E. Jin, M. Addicoat, T. Heine, D. Jiang, J. Am. Chem. Soc. 2016, 138, 5797.
- 7a) S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031; b) X. Li, Q. Gao, J. Wang, Y. Chen, Z.-H. Chen, H.-S. Xu, W. Tang, K. Leng, G.-H. Ning, J. Wu, Q.-H. Xu, S. Y. Quek, Y. Lu, K. P. Loh, Nat. Commun. 2018, 9, 2335; c) Z. Li, K. Geng, T. He, K. T. Tan, N. Huang, Q. Jiang, Y. Nagao, D. Jiang, Angew. Chem., Int. Ed. 2021, 60, 19419; d) Z. Li, N. Huang, K. H. Lee, Y. Feng, S. Tao, Q. Jiang, Y. Nagao, S. Irle, D. Jiang, J. Am. Chem. Soc. 2018, 140, 12374.
- 8a) E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu, Q. Xu, D. Jiang, Nat. Commun. 2018, 9, 4143; b) Y. Yang, N. Luo, S. Lin, H. Yao, Y. Cai, ACS Catal. 2022, 12, 10718; c) S. Yang, D. Streater, C. Fiankor, J. Zhang, J. Huang, J. Am. Chem. Soc. 2021, 143, 1061.
- 9a) S. Xu, Y. Li, B. P. Biswal, M. A. Addicoat, S. Paasch, P. Imbrasas, S. Park, H. Shi, E. Brunner, M. Richter, S. Lenk, S. Reineke, X. Feng, Chem. Mater. 2020, 32, 7985; b) Y. Wang, Y.-Z. Cheng, K.-M. Wu, D.-H. Yang, X.-F. Liu, X. Ding, B.-H. Han, Angew. Chem., Int. Ed. 2023, 62, 202310794.
- 10P. Albacete, J. I. Martínez, X. Li, A. López-Moreno, S. a. Mena-Hernando, A. E. Platero-Prats, C. Montoro, K. P. Loh, E. M. Pérez, F. Zamora, J. Am. Chem. Soc. 2018, 140, 12922.
- 11Y. Cheng, H. Du, Y. Wang, J. Xin, Y. Dong, X. Wang, X. Zhou, B. Gui, J. Sun, C. Wang, J. Am. Chem. Soc. 2025, 147, 6355.
- 12a) S. Haldar, D. Chakraborty, B. Roy, G. Banappanavar, K. Rinku, D. Mullangi, P. Hazra, D. Kabra, R. Vaidhyanathan, J. Am. Chem. Soc. 2018, 140, 13367; b) H. L. Qian, C. Dai, C.-X. Yang, X.-P. Yan, ACS Appl. Mater. Interfaces 2017, 9, 24999; c) L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310.
- 13a) Q. Gao, X. Li, G.-H. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.-S. Xu, K. P. Loh, Chem. Commun. 2018, 54, 2349; b) A. F. M. El-Mahdy, M.-Y. Lai, S.-W. Kuo, J. Mater. Chem. C 2020, 8, 9520.
- 14M. Yang, H. Hanayama, L. Fang, M. A. Addicoat, Y. Guo, R. Graf, K. Harano, J. Kikkawa, E. Jin, A. Narita, K. Müllen, J. Am. Chem. Soc. 2023, 145, 14417.
- 15a) K. Koner, A. Sadhukhan, S. Karak, H. S. Sasmal, Y. Ogaeri, Y. Nishiyama, S. Zhao, M. Položij, A. Kuc, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2023, 145, 14475; b) C. Yin, M. Liu, Z. Zhang, M. Wei, X. Shi, Y. Zhang, J. Wang, Y. Wang, J. Am. Chem. Soc. 2023, 145, 11431.
- 16C. Chen, Z. D. Chang, Y. K. Guo, Y. B. Huang, X. Y. Wang, Angew. Chem., Int. Ed. 2024, 63, 202316596.
- 17Z. Song, D. Mao, S. H. P. Sung, R. T. K. Kwok, J. W. Y. Lam, D. Kong, D. Ding, B. Z. Tang, Adv. Mater. 2016, 28, 7249.
- 18a) X.-A. Li, Z.-Z. Liang, Y.-C. Zhou, J.-F. Huang, X.-L. Wang, L.-M. Xiao, J.-M. Liu, Aggregate 2024, 5, 442; b) L. Zhang, B. Zhang, M.-J. Zhang, W. Li, H. Li, Y. Jiao, Q.-C. Yang, S. Wang, Y.-T. Liu, A. Song, H.-T. Feng, J. Sun, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Z.-J. Sun, Nat. Commun. 2025, 16, 44; c) F. Mehvari, V. Ramezanzade, P. Asadi, N. Singh, J. Kim, M. Dinari, J. S. Kim, Aggregate 2024, 5, 480; d) Y. Shi, J. Yang, F. Gao, Q. Zhang, ACS Nano 2023, 17, 1879.
- 19a) W. Wang, L. Lin, Y. Du, Y. Song, X. Peng, X. Chen, C. J. Yang, Nat. Commun. 2019, 10, 1317; b) L. Lin, Q. Wu, J. Song, Y. Du, J. Gao, Y. Song, W. Wang, C. Yang, Sci. Adv. 2020, 6, abb2531.