Supramolecular Nanoplatforms with Activable Ultrasound and Magnetic Resonance Imaging for Cancer Diagnosis and Therapy
Taoxia Liu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorFanqi Liu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXindi Li
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Suying Xu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Leyu Wang
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTaoxia Liu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorFanqi Liu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXindi Li
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Suying Xu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Leyu Wang
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Excellent multifunctional platforms for cancer diagnosis and treatment are highly desirable. Herein, multifunctional nanocomposites are constructed by utilizing Mn2+ to coordinate to the imidazole moiety anchored on CuO2 nanoparticles through cyclodextrin-adamantane interaction. The encapsulated CuO2 nanoparticles (NPs) can generate hydrogen peroxide (H2O2) at tumor sites under acidic conditions upon decomposition, which is further turned into oxygen (O2) under Mn2+ catalysis, facilitating both ultrasound and magnetic resonance imaging (MRI). Moreover, the proposed nanomedicine enhances reactive oxygen species (ROS) generation and depletes glutathione (GSH), leading to increased lipid peroxidation (LPO) and effective ferroptosis-mediated cancer therapy. Such a strategy presents a promising approach for the development of theranostics for imaging-guided tumor therapy.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412566-sup-0001-SuppMat.docx6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) E. Svoboda, Nature 2020, 579, S20; b) J. J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer. 2017, 17, 20.
- 2a) Q. Zhou, J. J. Xiang, N. S. Qiu, Y. C. Wang, Y. Piao, S. Q. Shao, J. B. Tang, Z. X. Zhou, Y. Q. Shen, Chem. Rev. 2023, 123, 10920; b) Z. Y. Ye, Y. Bao, Z. F. Chen, H. L. Ye, Z. Z. Feng, Y. S. Li, Y. X. Zeng, Z. X. Pan, D. F. Ouyang, K. Zhang, X. J. Liu, Y. He, Coord. Chem. Rev. 2024, 504, 215654; c) T. Lammers, Adv. Mater. 2024, 36, 2312169; d) W. Y. Wang, W. J. Yu, G. R. Li, H. Huang, X. R. Song, L. D. Yu, Y. Chen, Coord. Chem. Rev. 2023, 488, 215178; e) Z. F. Pei, H. L. Lei, L. Cheng, Chem. Soc. Rev. 2023, 52, 2031.
- 3a) F. Q. Liu, X. D. Li, Y. M. Li, S. Y. Xu, C. Guo, L. Y. Wang, Chem. Sci. 2024, 15, 17397; b) F. Zhang, K. Cheng, Z. Y. Huang, X. L. Hou, X. S. Zhang, Z. T. Zhong, Y. G. Hu, X. L. Lei, Y. Li, P. J. Zhang, Y. D. Zhao, Q. R. Xu, Adv. Funct. Mater. 2023, 33, 2212740; c) X. F. Zhang, Y. Chen, X. He, Y. C. Zhang, M. Zhou, C. J. Peng, Z. G. He, S. Y. Gui, Z. B. Li, Small 2021, 17, 2103712; d) Q. Luo, J. H. Liu, Q. Ma, S. Y. Xu, L. Y. Wang, Small 2023, 19, 2206821; e) H. Q. Liu, Y. B. Li, J. Y. An, Z. L. Lu, Q. Ma, D. Q. Feng, S. Y. Xu, L. Y. Wang, Nano Lett. 2024, 24, 14720; f) H. Zhu, X. J. Yin, Y. Zhou, S. Y. Xu, T. D. James, L. Y. Wang, Chem 2022, 8, 2498; g) Q. Luo, Q. Ma, T. X. Liu, Y. T. Luo, L. Y. Wang, C. Guo, L. Y. Wang, ACS Nano 2024, 18, 10063; h) W. B. Dirersa, T.-C. Kan, G. Getachew, A. Wibrianto, S. Ochirbat, A. Rasal, J. Chang, J.-Y. Chang, ACS Appl. Mater. Interfaces 2023, 15, 55258.
- 4a) C. Guo, X. Y. Xiong, X. X. Zhao, Y. M. Li, S. J. Li, S. Y. Xu, T. D. James, L. Y. Wang, ACS Appl Mater. Interfaces 2024, 16, 65319; b) Y. Sun, J. Wang, Y. Y. Zhu, T. T. Han, Y. Liu, H. Y. Wang, Coord. Chem. Rev. 2025, 524, 216303; c) M. L. Xu, Y. H. Lin, Y. H. Li, Y. Dong, C. Guo, X. L. Zhou, L. Y. Wang, Small 2024, 2406879; d) M. H. Y. Cheng, Y. L. Mo, G. Zheng, Adv. Healthc. Mater. 2021, 10, 2001549; e) R. Qu, X. Q. Jiang, X. Zhen, Chem. Soc. Rev. 2024, 53, 10970; f) L. L. Wu, J. G. Huang, K. Y. Pu, T. D. James, Nat. Rev. Chem. 2021, 5, 406.
- 5a) Y. I. Yoon, W. Tang, X. Y. Chen, Small Methods 2017, 1, 1700173; b) Y. Qin, X. R. Geng, Y. Sun, Y. T. Zhao, W. Y. Chai, X. B. Wang, P. Wang, J. Control. Release. 2023, 353, 105; c) S. Sabuncu, A. Yildirim, Nano Converg. 2021, 8, 19.
- 6a) A. Yildirim, R. Chattaraj, N. T. Blum, D. Shi, K. Kumar, A. P. Goodwin, Adv. Healthc. Mater. 2017, 6, 1700514; b) R. F. Liu, J. Tang, Y. X. Xu, Z. F. Dai, ACS Nano 2019, 13, 5124.
- 7X. Zhang, J. O. Machuki, W. Z. Pan, W. B. Cai, Z. Q. Xi, F. Z. Shen, L. J. Zhang, Y. Yang, F. L. Gao, M. Guan, ACS Nano 2020, 14, 4045.
- 8a) S. S. Wang, X. Zhang, Y. Liu, Y. Wang, N. Sun, J. Yin, J. L. Bao, G. G. Liao, D. Y. Li, T. D. Xu, F. L. Gao, Chem. Eng. J. 2023, 471, 144766; b) F. C. Lin, Y. J. Xie, T. Deng, J. I. Zink, J. Am. Chem. Soc. 2021, 143, 6025.
- 9a) K. H. Min, H. S. Min, H. J. Lee, D. J. Park, J. Y. Yhee, K. Kim, I. C. Kwon, S. Y. Jeong, O. F. Silvestre, X. Y. Chen, Y. S. Hwang, E. C. Kim, S. C. Lee, ACS Nano 2015, 9, 134; b) E. Kang, H. S. Min, J. Lee, M. H. Han, H. J. Ahn, I. C. Yoon, K. Choi, K. Kim, K. Park, I. C. Kwon, Angew. Chem., Int. Ed. 2010, 49, 524; c) C. N. Xu, Y. B. Wang, E. L. Wang, N. Yan, S. Sheng, J. Chen, L. Lin, Z. P. Guo, H. Y. Tian, X. S. Chen, Adv. Funct. Mater. 2021, 31, 10.
- 10a) H. Cheng, J. Y. Zhu, S. Y. Li, J. Y. Zeng, Q. Lei, K. W. Chen, C. Zhang, X. Z. Zhang, Adv. Funct. Mater. 2016, 26, 7847; b) T. Z. Liu, N. Zhang, Z. G. Wang, M. Y. Wu, Y. Chen, M. Ma, H. R. Chen, J. L. Shi, ACS Nano 2017, 11, 9093.
- 11a) Y. J. Lu, Y. D. Chen, G. H. Hou, H. L. Lei, L. Liu, X. Huang, S. M. Sun, L. Y. Liu, X. Y. Liu, J. T. Na, Y. X. Zhao, L. Cheng, L. P. Zhong, ACS Nano 2024, 18, 10542; b) B. Liu, Y. L. Bian, S. Liang, M. Yuan, S. M. Dong, F. He, S. L. Gai, P. P. Yang, Z. Y. Cheng, J. Lin, ACS Nano 2022, 16, 617; c) T. Y. Jiang, T. Y. Jia, Y. P. C. Yin, T. Y. Li, X. R. Song, W. Feng, S. Wang, L. Ding, Y. Chen, Q. Zhang, ACS Nano 2025, 19, 5429; d) G. Getachew, C. Korupalli, A. S. Rasal, J.-Y. Chang, Compos. B Eng. 2021, 226, 109364.
- 12a) L. S. Lin, T. Huang, J. B. Song, X. Y. Ou, Z. T. Wang, H. Z. Deng, R. Tian, Y. J. Liu, J. F. Wang, Y. Liu, G. C. Yu, Z. J. Zhou, S. Wang, G. Niu, H. H. Yang, X. Y. Chen, J. Am. Chem. Soc. 2019, 141, 9937; b) H. Z. Deng, Z. Yang, X. Y. Pang, C. Y. Zhao, J. Tian, Z. L. Wang, X. Y. Chen, Nano Today 2022, 42, 101337; c) S. Koo, O. K. Park, J. Kim, S. I. Han, T. Y. Yoo, N. Lee, Y. G. Kim, H. Kim, C. Lim, J. S. Bae, J. Yoo, D. Kim, S. H. Choi, T. Hyeon, ACS Nano 2022, 16, 2535; d) W. W. Wu, Y. Yang, Y. Zhang, Y. N. Zeng, Z. Y. Liang, X. L. Song, Y. D. Huang, W. Xue, S. M. Yu, Chem. Eng. J 2024, 481, 148113.
- 13a) B. Tian, Y. Liu, J. Liu, Carbohydr. Polym. 2021, 251, 116871; b) T. X. Liu, C. Guo, S. Y. Xu, G. F. Hu, L. Y. Wang, Adv. Healthc. Mater. 2023, 12, 2300883; c) M. Xu, H. D. Zha, R. Han, Y. X. Cheng, J. M. Chen, L. D. Yue, R. B. Wang, Y. Zheng, Small 2022, 18, 2200330; d) Y. M. Zhang, Y. H. Liu, Y. Liu, Adv. Mater. 2020, 32, 1806158.
- 14a) Z. X. Liu, Y. Liu, Chem. Soc. Rev. 2022, 51, 4786; b) Q. X. Wang, A. W. Zhang, L. Zhu, X. W. Yang, G. H. Fang, B. Tang, Coord. Chem. Rev. 2023, 476, 214919; c) X. Y. Dong, Z. M. Zhang, H. Y. Xiao, G. Q. Liu, S. N. Lei, Z. Wang, X. Z. Yan, S. T. Wang, C. H. Tung, L. Z. Wu, H. Cong, Angew. Chem., Int. Ed. 2024, 63, 202318368; d) J. C. Ji, X. Q. Wei, W. H. Wu, C. Yang, Acc. Chem. Res. 2023, 56, 1896.