A Paradigm Shift: From Batch Processing to Flow Chemistry
Kallum Hiten Mehta
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Singapore, 138634 Republic of Singapore
Search for more papers by this authorRiko I Made
Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Singapore, 138634 Republic of Singapore
Search for more papers by this authorIvan P. Parkin
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorGopinathan Sankar
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorCorresponding Author
Albertus Denny Handoko
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Rd, Singapore, 627833 Republic of Singapore
E-mail: [email protected]
Search for more papers by this authorKallum Hiten Mehta
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Singapore, 138634 Republic of Singapore
Search for more papers by this authorRiko I Made
Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Singapore, 138634 Republic of Singapore
Search for more papers by this authorIvan P. Parkin
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorGopinathan Sankar
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorCorresponding Author
Albertus Denny Handoko
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Rd, Singapore, 627833 Republic of Singapore
E-mail: [email protected]
Search for more papers by this authorAbstract
Customisable flow chemistry reactors are becoming more affordable and accessible to wider research community. Coupled with rapidly advancing machine learning (ML) optimisation algorithms, time consuming research activities like catalyst discovery, reaction screening and optimisation can now be achievable quicker in flow, placing us in an interesting crossroad: should we start thinking about flow integration earlier in the research phase? In this perspective, parallels and differences between batch and flow heterogeneous catalytic reaction optimisations will be discussed with practical examples. Challenges in flow and batch processing are compared, combined with fresh perspectives of how reaction conditions can be adjusted more flexibly in multi-pass flow setting. Finally, recent progress of integrating computational techniques into flow process optimisation of contemporary “chemical looping” and paired reactions for more sustainable chemical productions will also be discussed.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202411519-sup-0001-SuppMat.pdf134.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. M. Friend, B. Xu, Acc. Chem. Res. 2017, 50, 517.
- 2R. Schlögl, Angew. Chem., Int. Ed. 2015, 54, 3465.
- 3I. Fechete, Y. Wang, J. C. Védrine, Catal. Today 2012, 189, 2.
- 4J. R. Whitaker, A. G. J. Voragen, D. W. S. Wong, Handbook of Food Enzymology, CRC Press, Boca Raton 2002, 1128.
10.1201/9780203910450 Google Scholar
- 5M. Faraday, Philos. Trans. R. Soc. Lond. 1834, 124, 55.
10.1098/rstl.1834.0007 Google Scholar
- 6W. M. Bayliss, Nature 1914, 94, 253.
10.1038/094253a0 Google Scholar
- 7F. Haber, Thermodynamik Technischer Gasreaktionen: Sieben Vorlesungen, R. Oldenburg, München, Germany 1905.
10.1515/9783486732733 Google Scholar
- 8C. Bosch, O. Ludwigshafen-On-The-Rhine, Process of Producing Ammonia 1911, 8.
- 9D. Stone, ACS Chem Sci. 2021.
- 10A. Goršek, P. Glavič, Chem. Eng. Res. Des. 1997, 75, 709.
- 11J. M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York, 1988, pp. 99–115.
- 12C. Holtze, R. Boehling, Curr. Opin. Chem. Eng. 2022, 36, 100798.
- 13M. D. Johnson, T. Braden, J. R. Calvin, A. Campbell Brewer, K. P. Cole, S. Frank, M. Kerr, D. Kjell, M. E. Kopach, J. R. Martinelli, S. A. May, J. Rincon, T. D. White, M. H. Yates, Chimia 2023, 77, 319.
- 14B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688.
- 15R. A. Sheldon, Green Chem. 2023, 25, 1704.
- 16M. C. Ince, B. Benyahia, G. Vilé, ACS Sustainable Chem. Eng. 2025, 13, 2864.
- 17M. Shevlin, ACS Med. Chem. Lett. 2017, 8, 601.
- 18C. Y. J. Lim, R. I Made, Z. H. J. Khoo, C. K. Ng, Y. Bai, J. Wang, G. Yang, A. D. Handoko, Y.-F. Lim, Mater. Horiz. 2023, 10, 5022.
- 19L. Mou, T. Han, P. E. S. Smith, E. Sharman, J. Jiang, Adv. Sci. 2023, 10, 2301020.
- 20A. W. Brown, T. S. Mehta, D. B. Allison, Publication Bias in Science, Vol. 1, Oxford University Press, Oxford, United Kingdom 2017.
- 21R. Ciriminna, G. Angellotti, G. L. Petri, M. Pagliaro, Heliyon 2024, 10, 33658.
- 22G. Smith, E. J. F. Dickinson, Nat. Commun. 2022, 13, 6832.
- 23F. Abi Ghaida, K. Brinkert, Y. Cai, C. R. A. Catlow, H.-Y. T. Chen, P. Chen, J.-P. Dacquin, A. Daisley, J. El-Kadi, W. Gao, J. Guo, J. S. J. Hargreaves, M. D. Higham, P. L. Holland, H. Hosono, G. J. Irvine, J. T. S. Irvine, M. Kaur, Y. Kobayashi, S. Laassiri, L. Liedtke, D. R. MacFarlane, J. Makepeace, I. J. McPherson, V. Mishra, P. Ntola, S. Otomo, J. C. Peters, Y. Sekine, Z. Shi, et al., Faraday Discuss. 2023, 243, 198.
- 24A. D. Handoko, F. Wei, Y. Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922.
- 25G. M. Monsalve-Bravo, H. M. Moscoso-Vasquez, H. Alvarez, Ind. Eng. Chem. Res. 2014, 53, 9439.
- 26J. Osorio-Tejada, F. Ferlin, L. Vaccaro, V. Hessel, Green Chem. 2022, 24, 325.
- 27C. Lucarelli, A. Vaccari, Green Chem. 2011, 13, 1941.
- 28M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796.
- 29I. R. Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519.
- 30M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45, 4892.
- 31N. K. Gupta, Y. Guo, S. Y. Chang, J. Lin, Z. H. J. Khoo, R. I. Made, Z. E. Ooi, C. Y. J. Lim, C. H. Lee, M. Sivapaalan, Y.-F. Lim, E. Khoo, L. W. Feng, Y. Lum, A. D. Handoko, RSC Sustain 2024, 2, 536.
- 32A. Saleem, C. Mathpati, N. K. Gupta, A. D. Handoko, I. A. Karimi, Ind. Eng. Chem. Res. 2024, 63, 19017.
- 33Y. Bai, Z. H. J. Khoo, R. I Made, H. Xie, C. Y. J. Lim, A. D. Handoko, V. Chellappan, J. J. Cheng, F. Wei, Y.-F. Lim, K. Hippalgaonkar, Adv. Mater. 2024, 36, 2304269.
- 34A. Filipa De Almeida, T. Rodrigues, in Enabling Tools and Techniques for Organic Synthesis (Ed.: S. G. Newman), Wiley, Hoboken, New Jersey, United States 2023, pp. 393–421.
10.1002/9781119855668.ch10 Google Scholar
- 35W. J. Roth, P. Nachtigall, R. E. Morris, J. Čejka, Chem. Rev. 2014, 114, 4807.
- 36R. Pitchai, K. Klier, Catal. Rev. 1986, 28, 13.
- 37M. Lin, C. Xia, B. Zhu, H. Li, X. Shu, Chem. Eng. J. 2016, 295, 370.
- 38M. Bi, Y. Guo, S. Wang, B. Zhang, Y. Jiang, H. Li, Q. Xu, L. Chen, Q. Zhao, N. Han, New J. Chem. 2023, 47, 12027.
- 39G. Sankar, J. M. Thomas, C. R. A. Catlow, C. M. Barker, D. Gleeson, N. Kaltsoyannis, J. Phys. Chem. B 2001, 105, 9028.
- 40C. M. Barker, D. Gleeson, N. Kaltsoyannis, C. R. A. Catlow, G. Sankar, J. M. Thomas, Phys. Chem. Chem. Phys. 2002, 4, 1228.
- 41C. P. Gordon, H. Engler, A. S. Tragl, M. Plodinec, T. Lunkenbein, A. Berkessel, J. H. Teles, A.-N. Parvulescu, C. Copéret, Nature 2020, 586, 708.
- 42C. N. Caughlan, H. S. Smith, W. Katz, W. Hodgson, R. W. Crowe, J. Am. Chem. Soc. 1951, 73, 5652.
- 43L. Harvey, E. Kennedy, B. Z. Dlugogorski, M. Stockenhuber, Appl. Catal. Gen. 2015, 489, 241.
- 44P. Wu, J. Catal. 2003, 214, 317.
- 45G. J. Hutchings, D. F. Lee, J. Chem. Soc. Chem. Commun. 1994, 1095.
- 46Y. Rodenas, R. Mariscal, J. L. G. Fierro, D. Martín Alonso, J. A. Dumesic, M. López Granados, Green Chem. 2018, 20, 2845.
- 47N. D. Shcherban, R. Y. Barakov, S. A. Sergiienko, K. Eränen, J. Wärnå, D. Y. Murzin, Catal. Lett. 2022, 152, 2920.
- 48D. Y. Murzin, E. Bertrand, P. Tolvanen, S. Devyatkov, J. Rahkila, K. Eränen, J. Wärnå, T. Salmi, Ind. Eng. Chem. Res. 2020, 59, 13516.
- 49X. Wu, H. Guo, L. Jia, Y. Xiao, B. Hou, Y. Gao, D. Li, Fuel 2024, 359, 130404.
- 50H. Choudhary, S. Nishimura, K. Ebitani, Appl. Catal. Gen. 2013, 458, 55.
- 51Y. Lou, S. Marinkovic, B. Estrine, W. Qiang, G. Enderlin, ACS Omega 2020, 5, 2561.
- 52Y. N. Palai, A. Fukuoka, A. Shrotri, ChemCatChem 2023, 15, 202300766.
- 53M. A. Fox, M. T. Dulay, K. Krosley, J. Am. Chem. Soc. 1994, 116, 10992.
- 54A. D. Clayton, A. M. Schweidtmann, G. Clemens, J. A. Manson, C. J. Taylor, C. G. Niño, T. W. Chamberlain, N. Kapur, A. J. Blacker, A. A. Lapkin, R. A. Bourne, Chem. Eng. J. 2020, 384, 123340.
- 55Q. Wang, X. Zheng, J. Wu, Y. Wang, D. Wang, Y. Li, Small Struct. 2022, 3, 2200059.
- 56A. D. Handoko, C. W. Ong, Y. Huang, Z. G. Lee, L. Lin, G. B. Panetti, B. S. Yeo, J. Phys. Chem. C 2016, 120, 20058.
- 57A. D. Handoko, K. Li, J. Tang, Curr. Opin. Chem. Eng. 2013, 2, 200.
- 58T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637.
- 59P. G. Russell, N. Kovac, S. Srinivasan, M. Steinberg, J. Electrochem. Soc. 1977, 124, 1329.
- 60Y. Huang, A. D. Handoko, P. Hirunsit, B. S. Yeo, ACS Catal. 2017, 7, 1749.
- 61X. Ding, J. Zhang, Y. Li, eScience 2023, 3, 100137.
- 62G. O. Larrazábal, P. Strøm-Hansen, J. P. Heli, K. Zeiter, K. T. Therkildsen, I. Chorkendorff, B. Seger, ACS Appl. Mater. Interfaces 2019, 11, 41281.
- 63O. Gutiérrez-Sánchez, B. De Mot, M. Bulut, D. Pant, T. Breugelmans, ACS Appl. Mater. Interfaces 2022, 14, 30760.
- 64A. D. Handoko, H. H. Khoo, I. Halim, K. Murugappan, in Life Cycle Assessment, World Scientific, Singapore 2022, pp. 39–53.
10.1142/9789811245800_0003 Google Scholar
- 65J. M. Spurgeon, B. Kumar, Energy Environ. Sci. 2018, 11, 1536.
- 66T. Zhang, J. C. Bui, Z. Li, A. T. Bell, A. Z. Weber, J. Wu, Nat. Catal. 2022, 5, 202.
- 67A. K. Buckley, T. Cheng, M. H. Oh, G. M. Su, J. Garrison, S. W. Utan, C. Zhu, F. D. Toste, W. A. Goddard, F. M. Toma, ACS Catal. 2021, 11, 9034.
- 68C. Chen, Y. Li, S. Yu, J. Jin, M. Li, M. B. Ross, P. Yang, Joule 2020, 4, 1688.
- 69S. Agrotis, M. Emre Sener, O. S. J. Hagger, A. D. Handoko, D. J. Caruana, Appl. Mater. Today 2024, 39, 102286.
- 70Á. Balog, E. Kecsenovity, G. F. Samu, J. He, D. Fekete, C. Janáky, Nat. Catal. 2024, 7, 522.
- 71X. Liu, M. Albloushi, M. Galvin, C. W. Schroeder, Y. Wu, W. Li, Green Chem. 2024, 26, 11351.