Thermoelectric Properties of a Light Compound Fe2S2: the Role of Electron Correlation Strengthened Spin-Orbital Coupling
Xincan Wang
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Zizhen Zhou
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaolong Yang
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorGuang Han
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorXu Lu
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorGuoyu Wang
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Xiaoyuan Zhou
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXincan Wang
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorCorresponding Author
Zizhen Zhou
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaolong Yang
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorGuang Han
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorXu Lu
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
Search for more papers by this authorGuoyu Wang
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Xiaoyuan Zhou
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Spin-orbit coupling (SOC) induced nontrivial bandgap and complex Fermi surface has been considered to be profitable for thermoelectrics, which, however, is generally appreciable only in heavy elements, thereby detrimental to practical application. In this study, the SOC-driven extraordinary thermoelectric performance in a light 2D material Fe₂S₂ is demonstrated via first-principles calculations. The abnormally strong SOC, induced by electron correlation through 3d orbitals polarization, significantly renormalizes the band structures, which opens the bandgap via Fe 3d orbitals inversion, exposes the second conduction valley with weak electron-phonon coupling, and aligns the energy of Fe 3d and S 3p orbitals with divergent momentum in valence band. Such topological band renormalization triggers improvement of both p- and n-type power factors by more than 200%. Combining with the low lattice thermal conductivity caused by lone pair electrons and intense high-order phonon scattering, the peak zT can reach 1.6 and 1.8 for p- and n-type Fe₂S₂ at 400 K, respectively. This work unravels the mechanism of SOC-provoked high zT in electron correlation systems, which inspires the development of high-performance thermoelectric materials without heavy and scarce elements.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202411244-sup-0001-SuppMat.docx1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Jungwirth, Q. Niu, A. MacDonald, Phys. Rev. Lett. 2002, 88, 207208.
- 2K. I. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 2008, 455, 778.
- 3Q. Shao, G. Yu, Y.-W. Lan, Y. Shi, M.-Y. Li, C. Zheng, X. Zhu, L.-J. Li, P. K. Amiri, K. L. Wang, Nano Lett. 2016, 16, 7514.
- 4M. Fang, Y. Wang, H. Wang, Y. Hou, E. Vetter, Y. Kou, W. Yang, L. Yin, Z. Xiao, Z. Li, Nat. Commun. 2020, 11, 2627.
- 5X. Wu, M. Li, J. Du, F. Hu, Energy Rep. 2022, 8, 2262.
- 6E. Dumitrescu, C. Zhang, D. Marinescu, S. Tewari, Phys. Rev. B 2012, 85, 245301.
- 7M. I. Alomar, D. Sánchez, Phys. Rev. B 2014, 89, 115422.
- 8M. Haverkort, I. Elfimov, L. Tjeng, G. Sawatzky, A. Damascelli, Phys. Rev. Lett. 2008, 101, 026406.
- 9R. Atta-Fynn, A. K. Ray, Phys. Rev. B 2007, 76, 115101.
- 10J. Li, Q. Yao, L. Wu, Z. Hu, B. Gao, X. Wan, Q. Liu, Nat. Commun. 2022, 13, 919.
- 11M. D. Nielsen, V. Ozolins, J. P. Heremans, Energy Environ. Sci. 2013, 6, 570.
- 12Z. Feng, T. Jia, J. Zhang, Y. Wang, Y. Zhang, Phys. Rev. B 2017, 96, 235205.
- 13Z. Liu, Y. Wang, J. Mao, H. Geng, J. Shuai, Y. Wang, R. He, W. Cai, J. Sui, Z. Ren, Adv. Energy Mater. 2016, 6, 1502269.
- 14F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, P. Kim, Phys. Rev. Lett. 2016, 116, 136802.
- 15M. J. Graf, S. Yip, J. A. Sauls, D. Rainer, Phys. Rev. B 1996, 53, 15147.
- 16A. F. Zurhelle, V. L. Deringer, R. P. Stoffel, R. Dronskowski, J. Phys. Condens.Matter 2016, 28, 115401.
- 17S. Chandra, K. Biswas, J. Am. Chem. Soc. 2019, 141, 6141.
- 18Y. Zhou, L. D. Zhao, Adv. Mater. 2017, 29, 1702676.
- 19L.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci. 2016, 9, 3044.
- 20C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, Science 2018, 360, 778.
- 21J. C. Meyer, C. O. Girit, M. Crommie, A. Zettl, Nature 2008, 454, 319.
- 22Z. Zhou, H. Liu, D. Fan, G. Cao, C. Sheng, Phys. Rev. B 2019, 99, 085410.
- 23Z. Zhou, X. Yang, H. Fu, R. Wang, X. Lu, G. Wang, X. Zhou, Adv. Funct. Mater. 2022, 32, 2206974.
- 24S. Chowdhury, D. Jana, Rep. Prog. Phys. 2016, 79, 126501.
- 25M. Driess, S. Yao, M. Brym, C. van Wüllen, Angew. Chem., Int. Ed. 2006, 45, 4349.
- 26Z. Qin, G. Qin, X. Zuo, Z. Xiong, M. Hu, Nanoscale 2017, 9, 4295.
- 27T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, Phys. Rev. B 2009, 79, 205433.
- 28M. K. Mohanta, A. Rawat, N. Jena, R. Ahammed, A. De Sarkar, Nanoscale 2019, 11, 21880.
- 29G. Zheng, Y. Jia, S. Gao, S.-H. Ke, Phys. Rev. B 2016, 94, 155448.
- 30R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B B 2015, 92, 115202.
- 31L. Lindsay, D. Broido, Phys. Rev. B 2011, 84, 155421.
- 32H. Xie, M. Hu, H. Bao, Appl. Phys. Lett. 2014, 104.
- 33T. Li, P.-H. Du, L. Bai, Q. Sun, P. Jena, Phys. Rev. Appl. 2022, 18, 064067.
- 34Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, Energy Environ. Sci. 2012, 5, 5246.
- 35A. J. Gabourie, S. V. Suryavanshi, A. B. Farimani, E. Pop, 2D Mater. 2020, 8, 011001.
10.1088/2053-1583/aba4ed Google Scholar
- 36Z. Tang, X. Wang, J. Li, C. He, M. Chen, C. Tang, T. Ouyang, Phys. Rev. B 2023, 108, 214304.
- 37J. Pei, B. Cai, H.-L. Zhuang, J.-F. Li, Natl. Sci. Rev. 2020, 7, 1856.
- 38S. Xie, X. Wan, Y. Wu, C. Li, F. Yan, Y. Ouyang, H. Ge, X. Li, Y. Liu, R. Wang, Adv. Mater. 2024, 36, 2400845.
- 39J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 40S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 2001, 73, 515.
- 41G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, J. G. Ángyán, Phys. Rev. B 2009, 79, 155107.
- 42J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 43P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 44R. Dronskowski, P. E. Blöchl, J. Phys. Chem. 1993, 97, 8617.
- 45G. K. Madsen, D. J. Singh, Comput. Phys. Commun. 2006, 175, 67.
- 46D. Zou, S. Xie, Y. Liu, J. Lin, J. Li, J. Mater. Chem. A 2013, 1, 8888.
- 47R. Tan, C. Zou, K. Pan, D. Zou, Y. Liu, J. Alloys Compd. 2018, 743, 610.
- 48K. Kaasbjerg, K. S. Thygesen, A.-P. Jauho, Phys. Rev. B 2013, 87, 235312.
- 49H. Lang, S. Zhang, Z. Liu, Phys. Rev. B 2016, 94, 235306.
- 50J. Northrup, Appl. Phys. Lett. 2011, 99.
- 51A. M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K. A. Persson, A. Jain, Nat. Commun. 2021, 12, 2222.
- 52A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.
- 53W. Li, J. Carrete, N. A. Katcho, N. Mingo, Comput. Phys. Commun. 2014, 185, 1747.