Synchronous Regulation of Charge Transfer and Defects in Perovskite Nanocomposite Films for Enhanced Sensitivity and Stability in Monolithically Integrated X-Ray Imaging Arrays
Hui Liu
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorYuyang Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorLi Ding
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorLixiang Wang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Weien Lai
National Engineering Laboratory of Special Display Technology, School of Instrument Science and Opto-electronics Engineering, Academy of Opto-Electronic Technology, HeFei University of Technology, HeFei, 230009 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDeren Yang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Shangyu Institute of Semiconductor Materials, Shaoxing, 312300 P. R. China
Search for more papers by this authorCorresponding Author
Yanjun Fang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Shangyu Institute of Semiconductor Materials, Shaoxing, 312300 P. R. China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHui Liu
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorYuyang Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorLi Ding
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorLixiang Wang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Weien Lai
National Engineering Laboratory of Special Display Technology, School of Instrument Science and Opto-electronics Engineering, Academy of Opto-Electronic Technology, HeFei University of Technology, HeFei, 230009 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDeren Yang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Shangyu Institute of Semiconductor Materials, Shaoxing, 312300 P. R. China
Search for more papers by this authorCorresponding Author
Yanjun Fang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Shangyu Institute of Semiconductor Materials, Shaoxing, 312300 P. R. China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Perovskites nanocrystals (PNCs) have garnered significant research interest in X-ray detection due to their strong X-ray absorption capability, and unique advantages in large area and thick film deposition that result from the decoupling of perovskite crystallization from film formation. However, traditional long-chain ligands used in PNCs, such as oleic acid and oleyl amine, suffer from poor conductivity and susceptibility to detachment, which limits the performance of X-ray detectors based on them. In this study, a strategy is proposed to partially replace long-chain ligands with short-chain counterparts like phenethylammoniumbromide (PEABr) and CF3PEABr, during the synthesis of CsPbBr3 PNCs. This approach leads to a lower defect density, enhanced carrier transport, and suppressed ion migration simultaneously in the resulting PNCs. These PNCs are then combined with organic bulk heterojunction to construct the nanocomposite X-ray detectors, which exhibit an impressive sensitivity of 10787 µC Gyair⁻¹ cm⁻2 and stable dark current baseline under a large electric field of ≈17 000 V cm−1. Finally, a flat panel X-ray imaging sensor is prepared by monolithically integrating the nanocomposite film with a thin-film transistor backplane, enabling high-resolution and real-time X-ray imaging. The image quality is further enhanced through a super-resolution reconstruction approach, effectively facilitating a wide range of practical applications in real-world scenarios.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410994-sup-0001-SuppMat.docx3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. N. Chapman, K. A. Nugent, Nat. Photon. 2010, 4, 833.
- 2M. Holler, M. Guizar-Sicairos, E. H. Tsai, R. Dinapoli, E. Muller, O. Bunk, J. Raabe, G. Aeppli, Nature 2017, 543, 402.
- 3J. Dudak, J. Zemlicka, J. Karch, M. Patzelt, J. Mrzilkova, P. Zach, Z. Hermanova, J. Kvacek, F. Krejci, Sci. Rep. 2016, 6, 30385.
- 4R. Symons, T. E. Cork, P. Sahbaee, M. K. Fuld, S. Kappler, L. R. Folio, D. A. Bluemke, A. Pourmorteza, Phys. Med. Biol. 2017, 62, 202.
- 5M. M. Lell, M. Kachelriess, Invest. Radiol. 2020, 55, 8.
- 6A. C. Kwan, A. Pourmorteza, D. Stutman, D. A. Bluemke, J. A. C. Lima, Radiology 2021, 298, 3.
- 7J. Peng, Y. Xu, F. Yao, Q. Lin, Nanoscale 2022, 14, 9636.
- 8H. Li, J. Li, N. Shen, S. Chen, H. Wei, B. Xu, Nano Energy 2024, 119, 109055.
- 9Z. Han, A. Mukherjee, A. Albert, A. K. Rumaiz, I. Harding, M. W. Tate, S. M. Gruner, J. Thom-Levy, A. J. Kuczewski, D. P. Siddons, G. A. Carini, J. Stavro, S. Léveillé, D. Vasileska, W. Zhao, A. Goldan, J. Instrum. 2023, 18, P04021.
- 10E. H. M. Heijne, Radiat. Meas. 2021, 140, 106436.
- 11W. Zhao, J. A. Rowlands, Med. Phys. 1995, 22, 1595.
- 12G. Spekowius, T. Wendler, R. Matthews, N. Relan, Journal of Nucl. Med. 2008, 49, 336.
10.2967/jnumed.107.047688 Google Scholar
- 13Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 2018, 561, 88.
- 14S. Shrestha, R. Fischer, G. J. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. Chen, S. F. Tedde, O. Schmidt, R. Hock, M. Rührig, M. Göken, W. Heiss, G. Anton, C. J. Brabec, Nat. Photon. 2017, 11, 436.
- 15Y. S. Kim, S. H. Hong, H. J. Park, J. T. Kim, H. J. Jeong, Y. S. Na, K. R. Lim, J. M. Park, K. B. Kim, J. Alloys and Compd. 2017, 707, 87.
- 16H. Wu, Y. Ge, G. Niu, J. Tang, Matter 2021, 4, 144.
- 17W. Pan, B. Yang, G. Niu, K. H. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. S. Miao, J. Tang, Adv. Mater. 2019, 31, 1904405.
- 18F. Yao, K. Dong, W. Ke, G. Fang, ACS Nano 2024, 18, 6095.
- 19Y. Hua, G. Zhang, X. Sun, P. Zhang, Y. Hao, Y. Xu, Y. Yang, Q. Lin, X. Li, Z. Zhai, F. Cui, H. Liu, J. Liu, X. Tao, Nat. Photon. 2024, 18, 870.
- 20Y. He, J. Song, M. Li, K. Sakhatskyi, W. Li, X. Feng, B. Yang, M. Kovalenko, H. Wei, Nat. Photon. 2024, 18, 1052.
- 21Y. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, N. G. Park, Nature 2017, 550, 87.
- 22S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp, J. E. Huerdler, M. Acharya, M. García-Batlle, O. Almora, A. Guerrero, G. Garcia-Belmonte, W. Heiss, O. Schmidt, S. F. Tedde, Nat. Electron. 2021, 4, 681.
- 23H. Wu, X. Chen, Z. Song, A. Zhang, X. Du, X. He, H. Wang, L. Xu, Z. Zheng, G. Niu, J. Tang, Adv. Mater. 2023, 35, 2301406.
- 24L. Li, L. Tao, L. Wang, Y. Li, J. Li, Z. Ni, Y. Fang, D. Yang, Sci. Adv. 2024, 10, eadj8659.
- 25J. Yuan, C. Bi, S. Wang, R. Guo, T. Shen, L. Zhang, J. Tian, Adv. Funct. Mater. 2019, 29, 1906615.
- 26J. Liu, B. Shabbir, C. Wang, T. Wan, Q. Ou, P. Yu, A. Tadich, X. Jiao, D. Chu, D. Qi, D. Li, R. Kan, Y. Huang, Y. Dong, J. Jasieniak, Y. Zhang, Q. Bao, Adv. Mater. 2019, 31, 1901644.
- 27Y. Liu, F. Li, Z. Xu, C. Zheng, T. Guo, X. Xie, L. Qian, D. Fu, X. Yan, ACS Appl. Mater. Interfaces 2017, 9, 25506.
- 28H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang, H. Yang, X. Yu, J. Qiu, Y. M. Yang, X. Xu, Adv. Mater. 2021, 33, 2102529.
- 29J. Wei, L. Tao, L. Li, M. Yan, C. Wang, W. Sun, D. Yang, Y. Fang, Adv. Opt. Mater. 2022, 10, 2102320.
- 30Y. Li, H. Liu, L. Ding, L. Li, L. Wang, D. Yang, Y. Fang, ACS Appl. Mater. Interfaces 2024, 16, 25033.
- 31C. Bi, Z. Yao, X. Sun, X. Wei, J. Wang, J. Tian, Adv. Mater. 2021, 33, 2006722.
- 32J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, Z. Hens, ACS Nano 2016, 10, 2071.
- 33J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162.
- 34L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 35Y. Gao, Y. Liu, F. Zhang, X. Bao, Z. Xu, X. Bai, M. Lu, Y. Wu, Z. Wu, Y. Zhang, Q. Wang, X. Gao, Y. Wang, Z. Shi, J. Hu, W. W. Yu, Y. Zhang, Adv. Mater. 2022, 34, 2207445.
- 36H. Shao, Y. Zhai, X. Wu, W. Xu, L. Xu, B. Dong, X. Bai, H. Cui, H. Song, Nanoscale 2020, 12, 11728.
- 37H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photon. 2016, 10, 333.
- 38C. Chen, T. Xuan, W. Bai, T. Zhou, F. Huang, A. Xie, L. Wang, R.-J. Xie, Nano Energy 2021, 85, 106033.
- 39Z. Yang, J. Ni, J. Guan, R. Wang, J. Li, S. Zhang, S. Li, T. Li, J. Li, H. Cai, J. Zhang, Org. Electron. 2024, 125, 106982.
- 40Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, ACS Energy Lett. 2017, 2, 1571.
- 41F. Gao, Y. Zhao, X. Zhang, J. You, Adv. Energy Mater. 2019, 10, 1902650.
- 42B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 43T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, B. Chen, S. Jiang, S. Xiong, H. Luo, S. Wan, L. Li, Q. Bao, Y. Tian, X. Gao, J. Xie, E. H. Sargent, H. Tan, Nat. Energy 2023, 8, 610.
- 44X. Zheng, W. Zhao, P. Wang, H. Tan, M. I. Saidaminov, S. Tie, L. Chen, Y. Peng, J. Long, W.-H. Zhang, J. Energy Chem. 2020, 49, 299.
- 45H. Du, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su, J. Yamamoto, Y. Wang, Phys. Med. Biol. 2008, 53, 1325.
- 46M. J. Yaffe, G. Zentai, L. E. Antonuk, L. D. Partain, R. Pavlyuchkova, C. Proano, G. F. Virshup, L. Melekhov, A. Zuck, B. N. Breen, O. Dagan, A. Vilensky, M. Schieber, H. Gilboa, P. Bennet, K. S. Shah, Y. N. Dmitriyev, J. A. Thomas, M. J. Yaffe, D. M. Hunter, Phys. Medical Imaging 2003, 2003, 77.
- 47D. M. Hunter, G. Belev, S. Kasap, M. J. Yaffe, Med. Phys. 2012, 39, 608.
- 48X. Xu, Y. Wu, Y. Zhang, X. Li, F. Wang, X. Jiang, S. Wu, S. Wang, Energy. Environ. Mater. 2023, 7, 2575.
- 49B. Yang, W. Pan, H. Wu, G. Niu, J. H. Yuan, K. H. Xue, L. Yin, X. Du, X. S. Miao, X. Yang, Q. Xie, J. Tang, Nat. Commun. 2019, 10, 1989.
- 50Q. Xu, X. Wang, H. Zhang, W. Shao, J. Nie, Y. Guo, J. Wang, X. Ouyang, ACS Appl. Electron. Mater. 2020, 2, 879.
- 51W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang, Q. Wang, Y. Deng, T. Li, A. Gruverman, L. Cao, J. Huang, Nat. Photon. 2017, 11, 315.
- 52G. J. Matt, I. Levchuk, J. Knüttel, J. Dallmann, A. Osvet, M. Sytnyk, X. Tang, J. Elia, R. Hock, W. Heiss, C. J. Brabec, Adv. Mater. Interfaces 2020, 7, 1901575.
- 53F. Ye, H. Lin, H. Wu, L. Zhu, Z. Huang, D. Ouyang, G. Niu, W. C. H. Choy, Adv. Funct. Mater. 2018, 29, 1806984.