Unlocking Peak Efficiency in Anion-Exchange Membrane Electrolysis with Iridium-Infused Ni/Ni2P Heterojunction Electrocatalysts
Balaji S. Salokhe
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorThanh Tuan Nguyen
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorRohit Singh Rawat
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorHewei Song
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Nam Hoon Kim
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Joong Hee Lee
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Carbon Composite Research Centre, Department of Polymer – Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorBalaji S. Salokhe
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorThanh Tuan Nguyen
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorRohit Singh Rawat
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorHewei Song
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Nam Hoon Kim
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Joong Hee Lee
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Carbon Composite Research Centre, Department of Polymer – Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing cost-effective, highly efficient, and durable bifunctional electrocatalysts for water electrolysis remains a significant challenge. Nickel-based materials have shown promise as catalysts, but their efficiency in alkaline electrolytes is still lacking. Fascinatingly, Mott–Schottky catalysts can fine-tune electron density at interfaces, boosting intermediate adsorption and facilitating desorption to reduce the energy barrier. In this study, iridium-implanted Mott–Schottky Ni/Ni2P nanosheets (IrSA–Ni/Ni2P) is introduced, which are delivered from the metal–organic framework and employ them as the bifunctional catalysts for water electrolysis devices. This catalyst requires a small 54 mV overpotential for hydrogen evolution reaction (HER) and 192 mV for oxygen evolution reaction (OER) to reach 10 mA·cm−2 in a 1.0 m KOH electrolyte. Density functional theory (DFT) calculations reveal that the incorporation of Ir atoms with enriched interfaces between Ni and Ni2P can promote the active sites and be favorable for the HER and OER. This discovery highlights the most likely reactive sites and offers a valuable blueprint for designing highly efficient and stable catalysts tailored for industrial-scale electrolysis. The IrSA-Ni/Ni2P electrode exhibits exceptional current density and outstanding stability in a single-cell anion-exchange membrane electrolyzer.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410986-sup-0001-SuppMat.docx7.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-T. Dinh, A. Jain, F. P. G. De Arquer, P. De Luna, J. Li, N. Wang, X. Zheng, J. Cai, B. Z. Gregory, O. Voznyy, B. Zhang, M. Liu, D. Sinton, E. J. Crumlin, E. H. Sargent, Nat. Energy 2019, 4, 107.
- 2H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.-Z. Qiao, Adv. Mater. 2021, 33, 2007508.
- 3S. Tasleem, C. S. Bongu, M. R. Krishnan, E. H. Alsharaeh, J. Energy Chem. 2024, 97, 166.
- 4M. De Bastiani, E. Van Kerschaver, Q. Jeangros, A. Ur Rehman, E. Aydin, F. H. Isikgor, A. J. Mirabelli, M. Babics, J. Liu, S. Zhumagali, E. Ugur, G. T. Harrison, T. G. Allen, B. Chen, Y. Hou, S. Shikin, E. H. Sargent, C. Ballif, M. Salvador, S. De Wolf, ACS Energy Lett. 2021, 6, 2944.
- 5S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu, Z. Tan, J. Li, J. Yan, Q. Chen, M. Chen, M. Shao, Nat. Catal. 2021, 4, 711.
- 6S. Swaminathan, P. Jerome, R. J. Deepak, R. Karvembu, T. H. Oh, Coord. Chem. Rev. 2024, 503, 215620.
- 7M. Wu, F. Dong, Y. Yang, X. Cui, X. Liu, Y. Zhu, D. Li, S. Omanovic, S. Sun, G. Zhang, Electrochem. Energy Rev. 2024, 7, 10.
- 8L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche, E. Sibert, I. Shchedrina, R. Bousquet, V. Parry, M. Chatenet, Nat. Mater. 2024, 23, 252.
- 9G. A. Lindquist, Q. Xu, S. Z. Oener, S. W. Boettcher, Joule 2020, 4, 2549.
- 10H. Khiar, N. Barka, A. Puga, Coord. Chem. Rev. 2024, 510, 215814.
- 11M. R. Kandel, U. N. Pan, P. P. Dhakal, R. B. Ghising, T. T. Nguyen, J. Zhao, N. H. Kim, J. H. Lee, Appl. Catal., B 2023, 331, 122680.
- 12X. Lv, S. Wan, T. Mou, X. Han, Y. Zhang, Z. Wang, X. Tao, Adv. Funct. Mater. 2023, 33, 2205161.
- 13D. Chen, H. Bai, J. Zhu, C. Wu, H. Zhao, D. Wu, J. Jiao, P. Ji, S. Mu, Adv. Energy Mater. 2023, 13, 2300499.
- 14Q. P. Ngo, T. T. Nguyen, Q. T. T. Le, J. H. Lee, N. H. Kim, Adv. Energy Mater. 2023, 13, 2301841.
- 15Q. Wang, Z. Zhang, C. Cai, M. Wang, Z. L. Zhao, M. Li, X. Huang, S. Han, H. Zhou, Z. Feng, L. Li, J. Li, H. Xu, J. S. Francisco, M. Gu, J. Am. Chem. Soc. 2021, 143, 13605.
- 16Z. Qi, Y. Zhou, R. Guan, Y. Fu, J.-B. Baek, Adv. Mater. 2023, 35, 2210575.
- 17I. Jang, K. Im, H. Shin, K.-S. Lee, H. Kim, J. Kim, S. J. Yoo, Nano Energy 2020, 78, 105151.
- 18R. Madhu, A. Karmakar, K. Bera, S. Nagappan, H. N. Dhandapani, A. De, S. S. Roy, S. Kundu, Mater. Chem. Front. 2023, 7, 2120.
- 19Y. Zhang, X. Zheng, X. Guo, J. Zhang, A. Yuan, Y. Du, F. Gao, Appl. Catal., B 2023, 336, 122891.
- 20S. Karak, K. Koner, A. Karmakar, S. Mohata, Y. Nishiyama, N. T. Duong, N. Thomas, T. G. Ajithkumar, M. S. Hossain, S. Bandyopadhyay, S. Kundu, R. Banerjee, Adv. Mater. 2024, 36, 2209919.
- 21K. L. Zhou, Z. Wang, C. B. Han, X. Ke, C. Wang, Y. Jin, Q. Zhang, J. Liu, H. Wang, H. Yan, Nat. Commun. 2021, 12, 3783.
- 22X. Xu, H. Liao, L. Huang, S. Chen, R. Wang, S. Wu, Y. Wu, Z. Sun, H. Huang, Appl. Catal., B 2024, 341, 123312.
- 23Z. Lei, W. Cai, Y. Rao, K. Wang, Y. Jiang, Y. Liu, X. Jin, J. Li, Z. Lv, S. Jiao, W. Zhang, P. Yan, S. Zhang, R. Cao, Nat. Commun. 2022, 13, 24.
- 24M. Liu, Z. Sun, S. Li, X. Nie, Y. Liu, E. Wang, Z. Zhao, J. Mater. Chem. A 2021, 9, 22129.
- 25M. Singh, T. T. Nguyen, M. A. P., Q. P. Ngo, D. H. Kim, N. H. Kim, J. H. Lee, Small 2023, 19, 2206726.
- 26Y. Kang, S. Wang, K. S. Hui, S. Wu, D. A. Dinh, X. Fan, F. Bin, F. Chen, J. Geng, W.-C. M. Cheong, K. N. Hui, Nano Res. 2022, 15, 2952.
- 27C. Chen, H. Wen, P.-P. Tang, P. Wang, ACS Sustainable Chem. Eng. 2021, 9, 4564.
- 28J. Li, S. Sun, Y. Yang, Y. Dai, B. Zhang, L. Feng, Chem. Commun. 2022, 58, 9552.
- 29C. Sánchez-Sánchez, R. Muñoz, E. Alfonso-González, M. Barawi, J. I. Martínez, E. López-Elvira, G. Sánchez-Santolino, N. Shibata, Y. Ikuhara, G. J. Ellis, M. García-Hernández, M. F. López, V. A. de la Peña O'Shea, J. A. Martín-Gago, ACS Appl. Energy Mater. 2024, 7, 2101.
- 30C. Pitchai, M. Vedanarayanan, C.-M. Chen, S. M. Gopalakrishnan, Int. J. Hydrogen Energy 2024, 72, 755.
- 31T. T. Nguyen, J. Balamurugan, V. Aravindan, N. H. Kim, J. H. Lee, Chem. Mater. 2019, 31, 4490.
- 32H. Li, T. Hu, R. Zhang, J. Liu, W. Hou, Appl. Catal., B 2016, 188, 313.
- 33X. Cao, J. Tian, Y. Tan, Y. Zhu, J. Hu, Y. Wang, E. Liu, Z. Chen, Small 2024, 20, 2306113.
- 34Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 2015, 3, 1656.
- 35L. Peng, C. Wang, Q. Wang, R. Shi, T. Zhang, G. I. N. Waterhouse, Adv. Energy Sustain. Res. 2021, 2, 2100078.
- 36J. Yin, J. Jin, M. Lu, B. Huang, H. Zhang, Y. Peng, P. Xi, C.-H. Yan, J. Am. Chem. Soc. 2020, 142, 18378.
- 37X. Li, Z. Niu, M. Niu, J. Wang, D. Cao, X. Zeng, Small 2024, 20, 2311335.
- 38M. Xiao, J. Zhu, G. Li, N. Li, S. Li, Z. P. Cano, L. Ma, P. Cui, P. Xu, G. Jiang, H. Jin, S. Wang, T. Wu, J. Lu, A. Yu, D. Su, Z. Chen, Angew. Chem., Int. Ed. 2019, 58, 9640.
- 39M.-Q. Yang, K.-L. Zhou, C. Wang, M.-C. Zhang, C.-H. Wang, X. Ke, G. Chen, H. Wang, R.-Z. Wang, J. Mater. Chem. A 2022, 10, 25692.
- 40R. Balaji, T. T. Nguyen, Q. P. Ngo, N. H. Kim, J. H. Lee, Adv. Funct. Mater. 2024, 34, 2410672.
- 41C. Peng, W. Zhao, Z. Kuang, J. T. Miller, H. Chen, Appl. Catal., A 2021, 623, 118293.
- 42H. Zhang, A. W. Maijenburg, X. Li, S. L. Schweizer, R. B. Wehrspohn, Adv. Funct. Mater. 2020, 30, 2003261.
- 43G. Zhao, K. Rui, S. X. Dou, W. Sun, J. Mater. Chem. A 2020, 8, 6393.
- 44N. Krishna Mohan, G. Sahaya Baskaran, N. Veeraiah, Phys. Status Solidi 2006, 203, 2083.
- 45H. Yang, P. Guo, R. Wang, Z. Chen, H. Xu, H. Pan, D. Sun, F. Fang, R. Wu, Adv. Mater. 2022, 34, 2107548.
- 46S. Chen, L. Ma, Z. Huang, G. Liang, C. Zhi, Cell Rep. Phys. Sci. 2022, 3, 100729.
- 47H. Wang, Y. Tong, K. Li, P. Chen, J. Colloid Interface Sci. 2022, 628, 306.
- 48L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu, D. Du, Y. Lin, C. Zhu, Anal. Chem. 2019, 91, 11994.
- 49F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, J. Mater. Chem. A 2016, 4, 15148.
- 50B. Kim, T. Kim, K. Lee, J. Li, ChemElectroChem 2020, 7, 3578.
- 51H. Song, T. T. Nguyen, R. Chu, Y. Bai, N. H. Kim, J. H. Lee, Nano Energy 2024, 128, 109859.
- 52H.-G. Boyen, P. Ziemann, U. Wiedwald, V. Ivanova, D. M. Kolb, S. Sakong, A. Gross, A. Romanyuk, M. Büttner, P. Oelhafen, Nat. Mater. 2006, 5, 394.
- 53X. Wang, H. Huang, J. Qian, Y. Li, K. Shen, Appl. Catal., B 2023, 325, 122295.