Synergistic Enhancement of Ligand & Cluster Connectivity to Construct Highly Stable Fluorescein-Based MOFs with Thickened Channel Walls for Boosting Photocatalytic Activity
Han-Shu Li
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorRuiting Zheng
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorYanhong Liu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorLi Pei
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Pengyan Wu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYan Yang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Jian Wang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHan-Shu Li
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorRuiting Zheng
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorYanhong Liu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorLi Pei
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Pengyan Wu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYan Yang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Jian Wang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Fabricating visible-light-responsive metal−organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La8(CFL)4 containers like Chinese “Ritual Wine Vessels (Jue)” resemble linear arrangements interconnected by the [La2(COO)4] clusters. This arrangement induces benzene rings and xanthene rings to locate on the inner walls of 1D channels, resulting in thicker channel walls that contribute to enhanced stability. Consequently, La-CFL demonstrates outstanding catalytic performance in thiol–ene reactions under green LED irradiation. It exhibits 2.3 times higher efficiency than Cd-FL while reducing reaction time to one-fifth at 20 min. Furthermore, La-CFL displays size-selective catalysis and retains full activity for 20 cycles without degradation, an improvement over Cd-FL's recyclability limitations.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410922-sup-0001-SuppMat.docx2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Posner, Ber. Dtsch. Chem. Ges. 1905, 38, 646.
- 2a) M. Ahangarpour, I. Kavianinia, P. W. R. Harris, M. A. Brimble, Chem. Soc. Rev. 2021, 50, 898; b) C. E. Hoyle, C. N. Bowman, Angew. Chem., Int. Ed. 2010, 49, 1540; c) R. L. A. David, J. A. Kornfieldl, Macromolecules 2008, 41, 1151; d) C. A. DeForest, K. S. Anseth, Angew. Chem., Int. Ed. 2012, 51, 1816.
- 3a) D. S. Kazybayeva, G. S. Irmukhametova, V. V. Khutoryanskiy, Polym. Sci. Ser. B 2022, 64, 1; b) A. Borbás, Chem.-Eur. J. 2020, 26, 6090; c) K. Li, B. Yan, Inorg. Chem. Front. 2024, 11, 2902; d) M. Uchiyama, M. Osumi, K. Satoh, M. Kamigaito, Angew. Chem., Int. Ed. 2020, 59, 6832.
- 4a) N. ten Brummelhuis, C. Diehl, H. Schlaad, Macromolecules 2008, 41, 9946; b) C. Rissing, D. Y. Son, Organometallics 2008, 27, 5394.
- 5a) E. L. Tyson, M. S. Ament, T. P. Yoon, J. Org. Chem. 2013, 78, 2046; b) E. L. Tyson, Z. L. Niemeyer, T. P. Yoon, J. Org. Chem. 2014, 79, 1427.
- 6a) H. Liu, H. Chung, ACS Sustainable Chem. Eng. 2017, 5, 9160; b) M. H. Keylor, J. E. Park, C.-J. Wallentin, C. R. J. Stephenson, Tetrahedron 2014, 70, 4264; c) P. Rana, B. Kaushik, K. Solanki, K. M. Saini, R. K. Sharma, Chem. Commun. 2022, 58, 11354.
- 7a) Y. Wu, M. C. Simpson, J. Jin, ChemistrySelect 2022, 7, 202200319; b) M. L. Allegrezza, A. M. Thompson, A. J. Kloster, D. Konkolewicz, J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1931; c) C. M. Q. Le, G. Schrodj, I. Ndao, B. Bessif, B. Heck, T. Pfohl, G. Reiter, J. Elgoyhen, R. Tomovska, A. Chemtob, Macromol. Rapid Comm. 2022, 43, 2100740.
- 8a) S. Kaur, G. Zhao, E. Busch, T. Wang, Org. Biomol. Chem. 2019, 17, 1955; b) G. Zhao, S. Kaur, T. Wang, Org. Lett. 2017, 19, 3291; c) N. C. Taylor, J. F. McGouran, Org. Biomol. Chem. 2021, 19, 2177.
- 9a) Z. Ji, T. Li, O. M. Yaghi, Science 2020, 369, 674; b) Y. Su, K. Otake, J.-J. Zheng, P. Wang, Q. Lin, S. Kitagawa, C. Gu, Nat. Commun. 2024, 15, 2898; c) L. S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 2020, 120, 8536; d) N. Kolobov, M. G. Goesten, J. Gascon, Angew. Chem., Int. Ed. 2021, 60, 26038; e) Z. Chen, K. O. Kirlikovali, P. Li, O. K. Farha, Acc. Chem. Res. 2022, 55, 579; f) Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li, C.-Y. Su, Nat. Commun. 2021, 12, 1369.
- 10a) W. Gong, Z. Chen, J. Dong, Y. Liu, Y. Cui, Chem. Rev. 2022, 122, 9078; b) T. He, X.-J. Kong, J.-R. Li, Acc. Chem. Res. 2021, 54, 3083; c) M. Kalaj, S. M. Cohen, ACS Cent. Sci. 2020, 6, 1046; d) L. Chen, H.-F. Wang, C. Li, Q. Xu, Chem. Sci. 2020, 11, 5369; e) Y. Zhao, H. Zeng, X.-W. Zhu, W. Lu, D. Li, Chem. Soc. Rev. 2021, 50, 4484; f) G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 2021, 121, 12278.
- 11a) Y. Pi, X. Feng, Y. Song, Z. Xu, Z. Li, W. Lin, J. Am. Chem. Soc. 2020, 142, 10302; b) H. Wang, X. Zhang, W. Zhang, M. Zhou, H.-L. Jiang, Angew. Chem., Int. Ed. 2024, 63, 202401443; c) Q. Mo, L. Zhang, S. Li, H. Song, Y. Fan, C.-Y. Su, J. Am. Chem. Soc. 2022, 144, 22747; d) Y. Shi, A.-F. Yang, C.-S. Cao, B. Zhao, Coord. Chem. Rev. 2019, 390, 50; e) J. Tian, Z.-Y. Xu, D.-W. Zhang, H. Wang, S.-H. Xie, D.-W. Xu, Y.-H. Ren, H. Wang, Y. Liu, Z.-T. Li, Nat. Commun. 2016, 7, 11580; f) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem., Int. Ed. 2012, 51, 7440.
- 12a) L. Liu, S. Du, X. Guo, Y. Xiao, Z. Yin, N. Yang, Y. Bao, X. Zhu, S. Jin, Z. Feng, F. Zhang, J. Am. Chem. Soc. 2022, 144, 2747; b) L. Sun, M. Lu, Z. Yang, Z. Yu, X. Su, Y.-Q. Lan, L. Chen, Angew. Chem., Int. Ed. 2022, 61, 202204326; c) Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Angew. Chem., Int. Ed. 2019, 58, 5402; d) S. Zhang, L. Lu, J. Jiang, N. Liu, B. Zhao, M. Xu, P. Cheng, W. Shi, Adv. Mater. 2024, 36, 2403464; e) J. Bai, J. Wang, H. Zheng, X. Zhao, P. Wu, L. Pei, J. Wang, Small 2023, 19, 2305024.
- 13a) F. Ahmadijokani, H. Molavi, S. Tajahmadi, M. Rezakazemi, M. Amini, M. Kamkar, O. J. Rojas, M. Arjmand, Coord. Chem. Rev. 2022, 464, 214562; b) Ch. V. Reddy, K. R. Reddy, V. V. N. Harish, J. Shim, M. V. Shankar, N. P. Shetti, T. M. Aminabhavi, Int. J. Hydrogen Energy 2020, 45, 7656; c) Y. Gao, J. Wu, J. Wang, Y. Fan, S. Zhang, W. Dai, ACS Appl. Mater. Interfaces 2020, 12, 11036; d) L. Xia, J. Ni, P. Wu, J. Ma, L. Bao, Y. Shi, J. Wang, Dalton Trans. 2018, 47, 16551.
- 14a) C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831; b) Y. Gao, J. Xia, D. Liu, R. Kang, G. Yu, S. Deng, Chem. Eng. J. 2019, 378, 122118; c) X. Liu, B. Liu, G. Li, Y. Liu, J. Mater. Chem. A 2018, 6, 17177; d) L. Qin, H.-Z. Chen, J. Lei, Y.-Q. Wang, T.-Q. Ye, H.-G. Zheng, Cryst. Growth Des. 2017, 17, 1293; e) Z. Guo, J. K. Cheng, Z. Hu, M. Zhang, Q. Xu, Z. Kang, D. Zhao, RSC Adv. 2014, 4, 34221.
- 15a) X. Feng, Y. Pi, Y. Song, C. Brzezinski, Z. Xu, Z. Li, W. Lin, J. Am. Chem. Soc. 2020, 142, 690; b) Q. Huang, Q. Niu, X.-F. Li, J. Liu, S.-N. Sun, L.-Z. Dong, S.-L. Li, Y.-P. Cai, Y.-Q. Lan, Sci. Adv. 2022, 8, eadd5598; c) Y. Chen, P. Li, J. Zhou, C. T. Buru, L. Đorđević, P. Li, X. Zhang, M. M. Cetin, J. F. Stoddart, S. I. Stupp, M. R. Wasielewski, O. K. Farha, J. Am. Chem. Soc. 2020, 142, 1768; d) F. Yu, X. Jing, Y. Wang, M. Sun, C. Duan, Angew. Chem., Int. Ed. 2021, 60, 24849; e) Y. Wang, N.-Y. Huang, J.-Q. Shen, P.-Q. Liao, X.-M. Chen, J.-P. Zhang, J. Am. Chem. Soc. 2018, 140, 38.
- 16a) D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254; b) L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Angew. Chem., Int. Ed. 2019, 58, 9491; c) K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. D. Barmanbek, A. S. Alshammari, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2017, 139, 356; d) D. Li, M. Kassymova, X. Cai, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 412, 213262.
- 17a) T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982; b) J.-D. Xiao, H.-L. Jiang, Acc. Chem. Res. 2019, 52, 356; c) L. Zeng, X. Guo, C. He, C. Duan, ACS Catal. 2016, 6, 7935; d) J. Zhu, P.-Z. Li, W. Guo, Y. Zhao, R. Zou, Coord. Chem. Rev. 2018, 359, 80; e) Y. Wen, A. Renteria-Gomez, G. S. Day, M. F. Smith, T.-H. Yan, R. Ozdemir, O. Gutierrez, V. K. Sharma, X. Ma, H.-C. Zhou, J. Am. Chem. Soc. 2022, 144, 11840.
- 18a) X. Yu, S. M. Cohen, J. Am. Chem. Soc. 2016, 138, 12320; b) X. Deng, Z. Li, H. García, Chem.-Eur. J. 2017, 23, 11189; c) P. M. Stanley, J. Haimerl, N. B. Shustova, R. A. Fischer, J. Warnan, Nat. Chem. 2022, 14, 1342; d) A. Cadiau, N. Kolobov, S. Srinivasan, M. G. Goesten, H. Haspel, A. V. Bavykina, M. R. Tchalala, P. Maity, A. Goryachev, A. S. Poryvaev, M. Eddaoudi, M. V. Fedin, O. F. Mohammed, J. Gascon, Angew. Chem., Int. Ed. 2020, 59, 13468.
- 19a) Y.-H. Huang, T.-L. Sheng, R.-B. Fu, S.-M. Hu, C.-J. Shen, Q.-L. Zhu, X. Ma, X.-T. Wu, Chin. J. Struct. Chem. 2011, 30, 230; b) J. Thomas, K. S. Ambili, J. Mol. Struct. 2015, 1098, 167; c) J. Wang, Y. Liu, Y. Li, L. Xia, M. Jiang, P. Wu, Inorg. Chem. 2018, 57, 7495; d) K. Maity, D. Mukherjee, M. Sen, K. Biradha, ACS Appl. Nano Mater. 2019, 2, 1614; e) Y. Liu, C. Lin, B. Li, J. Wang, M. Wang, N. Zhang, Y. Feng, P. Wu, Inorg. Chem. Front. 2020, 7, 3541; f) L. Zhao, Z. Du, G. Ji, Y. Wang, W. Cai, C. He, C. Duan, Inorg. Chem. 2022, 61, 7256; g) H.-S. Li, Y. Gong, C. Ji, P. Wu, B. Gao, Y. Du, J. Wang, Dalton Trans. 2022, 51, 11730.
- 20a) X. Zhou, J. Dong, Y. Zhu, L. Liu, Y. Jiao, H. Li, Y. Han, K. Davey, Q. Xu, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2021, 143, 6681; b) A. M. Hamisu, A. Ariffin, A. C. Wibowo, Inorg. Chim. Acta 2020, 511, 119801.
- 21W. Han, X. Ma, J. Wang, F. Leng, C. Xie, H.-L. Jiang, J. Am. Chem. Soc. 2023, 145, 9665.
- 22a) S.-F. Li, S.-W. Ke, M. Wu, J.-L. Zuo, J. Su, G. Zhang, Adv. Opt. Mater. 2024, 12, 2302309; b) S. Liu, S. Dou, J. Meng, Y. Liu, Y. Liu, H. Yu, Appl. Catal. B-Environ. 2023, 331, 122709; c) C. Lin, L. Jiang, H. Cheng, Y. Qin, P. Wu, Y. Tang, Y. Liu, X. Yang, J. Wang, ACS Sustainable Chem. Eng. 2023, 11, 5262.
- 23a) R.-J. Zhang, X.-R. Li, R.-B. Liang, Y. Xiao, Q.-X. Tong, J.-J. Zhong, L.-Z. Wu, Org. Lett. 2024, 26, 591; b) Q. Wang, H. Cui, X. Wang, Z. Hu, P. Tao, M. Li, J. Wang, Y. Tang, H. Xu, X. He, J. Am. Chem. Soc. 2023, 145, 3064.
- 24a) S. Zhang, W. Yi, Y. Guo, R. Ai, Z. Yuan, B. Yang, J. Wang, Nanoscale 2021, 13, 3493; b) D. Limnios, C. G. Kokotos, Adv. Synth. Catal. 2017, 359, 323; c) A. Das, K. R. J. Thomas, Eur. J. Org. Chem. 2020, 2020, 7214.
- 25a) H. Ali, B. Mahto, A. Barhoi, S. Hussain, Nanoscale 2023, 15, 14551; b) Z. Guo, X. Liu, R. Bai, Y. Che, Y. Chi, C. Guo, H. Xing, Inorg. Chem. 2021, 60, 8672;