Iodine Stabilization in Perovskite Lattice for Internal Stress Relief
Yizhe Tang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorHuiyi Zong
Huanjiang Laboratory, Zhejiang University, Zhuji, 311800 China
Search for more papers by this authorCorresponding Author
Jin Huang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHusheng Yang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Kai Wang
Huanjiang Laboratory, Zhejiang University, Zhuji, 311800 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShengzhong (Frank) Liu
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201318 China
Search for more papers by this authorCorresponding Author
Dong Yang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYizhe Tang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorHuiyi Zong
Huanjiang Laboratory, Zhejiang University, Zhuji, 311800 China
Search for more papers by this authorCorresponding Author
Jin Huang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHusheng Yang
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, 710021 China
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Kai Wang
Huanjiang Laboratory, Zhejiang University, Zhuji, 311800 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShengzhong (Frank) Liu
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201318 China
Search for more papers by this authorCorresponding Author
Dong Yang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Atomic iodine ionization in perovskite crystals leads to defect formation, lattice distortion, and the occurrence of localized micro-strain. These atomic-level chemical and mechanical effects significantly alter the electronic band landscape, profoundly affecting device performance. While iodine stabilization effects have traditionally been focused on stability, their impact on electrical properties, particularly the coupling effect with internal stress and lattice strain, remains underexplored. In this study, an iodine stabilization protocol using a parallel-π-stacked small molecule, [2,2]-paracyclophane (PCP) is implemented, which plays a beneficial role in relieving internal stress within the perovskite lattice, thereby improving the film's electrical properties. By leveraging this iodine stabilization strategy, internal stress in the perovskite film, resulting in a strain-free perovskite film and a corresponding device with an improved efficiency of 25.26% from 23.93% is successfully alleviated. The maximum power point tracking test of the perovskite device keeps 85% of its initial efficiency when illuminated under 1 sun for 1000 h, while the control device only maintains 57% of the initial efficiency under the same conditions. The good stability originates from the stable iodide ions in the perovskite lattice due to preventing iodide ions oxidation and perovskite degradation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410776-sup-0001-SuppMat.docx3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Gong, G. Qu, Y. Qiao, Y. Wen, Y. Huang, S. Cai, L. Zhang, K. Jiang, S. Liu, M. Lin, M. C. Beard, Z.-X. Xu, X. Chen, Energy Environ. Sci. 2024, 17, 5080.
- 2Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. Liu, D. Yang, Adv. Funct. Mater. 2020, 30, 1908298.
- 3A. Walsh, J. Phys. Chem. C 2015, 119, 5755.
- 4P. Metrangolo, L. Canil, A. Abate, G. Terraneo, G. Cavallo, Angew. Chem. Int. Ed. 2022, 61, 202114793.
- 5J. H. Lee, J.-H. Lee, E.-H. Kong, H. M. Jang, Sci. Rep. 2016, 6, 21687.
- 6J. Ibaceta-Jaña, M. Chugh, A. S. Novikov, H. Mirhosseini, T. D. Kühne, B. Szyszka, M. R. Wagner, R. Muydinov, J. Phys. Chem. C 2022, 126, 16215.
- 7W. Chu, W. A. Saidi, J. Zhao, O. V. Prezhdo, Angew. Chem., Int. Ed. 2020, 59, 6435.
- 8Z. Guo, J. Wang, W.-J. Yin, Energy Environ. Sci. 2022, 15, 660.
- 9S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 10W. Lv, Z. Hu, W. Qiu, D. Yan, M. Li, A. Mei, L. Xu, R. Chen, Adv. Sci. 2022, 9, 2202028.
- 11K. Wang, C. Wu, Y. Hou, D. Yang, S. Priya, J. Mater. Chem. A 2019, 7, 24661.
- 12Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu, Z. Yu, G. Yang, Y. Deng, Q. Jiang, Y. Liu, Y. Yan, J. Huang, Nat. Energy 2022, 7, 65.
- 13S. Srivastava, S. Ranjan, L. Yadav, T. Sharma, S. Choudhary, D. Agarwal, A. Singh, S. Satapathi, R. K. Gupta, A. Garg, K. S. Nalwa, Commun. Mater. 2023, 4, 52.
- 14E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman, I. G. Scheblykin, E. L. Unger, E. Joselevich, Nat. Commun. 2020, 11, 489.
- 15X. Gu, W. Xiang, Q. Tian, S. Liu, Angew. Chem., Int. Ed. 2021, 60, 23164.
- 16S. Jariwala, H. Sun, G. W. P. Adhyaksa, A. Lof, L. A. Muscarella, B. Ehrler, E. C. Garnett, D. S. Ginger, Joule 2019, 3, 3048.
- 17Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science 2020, 367, 1352.
- 18C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, M. S. Islam, Nat. Commun. 2015, 6, 7497.
- 19S. Tan, I. Yavuz, N. D. Marco, T. Huang, S.-J. Lee, C. S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, H.-C. Wang, T.-H. Han, B. Dunn, Y. Huang, J.-W. Lee, Y. Yang, Adv. Mater. 2020, 32, 1906995.
- 20R. Wang, X. Li, J. Qi, C. Su, J. Yang, S. Yang, M. Yuan, T. He, Adv. Mater. 2023, 35, 2304149.
- 21T. W. Jones, A. Osherov, M. Alsari, M. Sponseller, B. C. Duck, Y.-K. Jung, C. Settens, F. Niroui, R. Brenes, C. V. Stan, Y. Li, M. Abdi-Jalebi, N. Tamura, J. E. Macdonald, M. Burghammer, R. H. Friend, V. Bulović, A. Walsh, G. J. Wilson, S. Lilliu, S. D. Stranks, Energy Environ. Sci. 2019, 12, 596.
- 22A. Karrech, M. Attar, A. Seibi, M. Elchalakani, F. Abbassi, H. Basarir, Rock Mech. Rock Eng. 2018, 51, 3313.
- 23H. Wang, Z. Chen, F. Tian, G. Zheng, H. Wang, T. Zhang, J. Qin, X. Gao, P. A. Aken, L. Zhang, X.-K. Liu, F. Gao, Adv. Energy Mater. 2023, 13, 2202185.
- 24C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 2018, 9, 5113.
- 25J. He, T. Wang, X. Bi, Y. Tian, C. Huang, W. Xu, Y. Hu, Z. Wang, B. Jiang, Y. Gao, Y. Zhu, X. Wang, Nat. Commun. 2024, 15, 5422.
- 26D. B. Kim, J. W. Lee, Y. S. Cho, Adv. Funct. Mater. 2021, 31, 2007131.
- 27N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. Seok, Nat. Mater. 2014, 13, 897.
- 28J.-F. Wang, L. Zhu, B.-G. Zhao, Y.-L. Zhao, J. Song, X.-Q. Gu, Y.-H. Qiang, Sci. Rep. 2017, 7, 14478.
- 29J. Li, R. Munir, Y. Fan, T. Niu, Y. Liu, Y. Zhong, Z. Yang, Y. Tian, B. Liu, J. Sun, D.-M. Smilgies, S. Thoroddsen, A. Amassian, K. Zhao, S. Liu, Joule 2018, 2, 1313.
- 30L. Dong, S. Sun, Z. Deng, W. Li, F. Wei, Y. Qi, Y. Li, X. Li, P. Lu, U. Ramamurty, Comput. Mater. Sci. 2018, 141, 49.
- 31N. Rolston, K. A. Bush, A. D. Printz, A. Gold-Parker, Y. Ding, M. F. Toney, M. D. McGehee, R. H. Dauskardt, Adv. Energy Mater. 2018, 8, 1802139.
- 32X. Lu, K. Sun, Y. Wang, C. Liu, Y. Meng, X. Lang, C. Xiao, R. Tian, Z. Song, Z. Zhu, M. Yang, Y. Bai, Z. Ge, Adv. Mater. 2024, 36, 2400852.
- 33M. A. Uddin, P. J. S. Rana, Z. Ni, G. Yang, M. Li, M. Wang, H. Gu, H. Zhang, B. D. Dou, J. Huang, Nat. Commun. 2024, 15, 1355.
- 34S. Chen, X. Xiao, H. Gu, J. Huang, Sci. Adv. 2024, 7, eabe8130.
10.1126/sciadv.abe8130 Google Scholar
- 35C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, J. Dou, T. Song, P. Chen, H. Zhou, Y. Chen, C. Zhu, Y. Bai, Q. Chen, Adv. Funct. Mater. 2022, 32, 2201193.
- 36L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019, 363, 265.
- 37H. Zhang, M. Qin, Z. Chen, W. Yu, Z. Ren, K. Liu, J. Huang, Y. Zhang, Q. Liang, H. T. Chandran, P. W. K. Fong, Z. Zheng, X. Lu, G. Li, Adv. Mater. 2021, 33, 2100009.
- 38Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. Y., Nat. Photon. 2019, 13, 460.
- 39X. Liu, J. Wu, Q. Guo, Y. Yang, H. Luo, Q. Liu, X. Wang, X. He, M. Huang, Z. Lan, J Mater. Chem. A 2019, 7, 11764.
- 40L. Zheng, A. Nozariasbmarz, Y. Hou, J. Yoon, W. Li, Y. Zhang, H. Wu, D. Yang, T. Ye, M. Sanghadasa, K. Wang, B. Poudel, S. Priya, K. Wang, Nat. Commun. 2022, 13, 7399.
- 41Y. Meng, J. Zhang, C. Liu, K. Zheng, L. Xie, S. Bu, B. Han, R. Cao, X. Yin, C. Liu, Z. Ge, Adv. Funct. Mater. 2023, 33, 2210600.
- 42Y. Meng, Y. Wang, C. Liu, P. Yan, K. Sun, Y. Wang, R. Tian, R. Cao, J. Zhu, H. Do, J. Lu, Z. Ge, Adv. Mater. 2024, 36, 2309208.
- 43W.-T. Wang, P. Chen, C.-H. Chiang, T.-F. Guo, C.-G. Wu, S.-P. Feng, Adv. Funct. Mater. 2020, 30, 1909755.