Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in Fe3O4@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption
Xiangyu Wang
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorHongsong Zhu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorBoyuan Cao
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorJingjing Qu
Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, 100 Pingle Yuan Road, Chaoyang District, Beijing, 100124 P. R. China
Search for more papers by this authorPengfei Yan
Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, 100 Pingle Yuan Road, Chaoyang District, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Tong Liu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
E-mail: [email protected]
Search for more papers by this authorXiangyu Wang
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorHongsong Zhu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorBoyuan Cao
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
Search for more papers by this authorJingjing Qu
Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, 100 Pingle Yuan Road, Chaoyang District, Beijing, 100124 P. R. China
Search for more papers by this authorPengfei Yan
Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, 100 Pingle Yuan Road, Chaoyang District, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Tong Liu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the Fe3O4@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core–shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of −55.8 dB and the absorption bandwidth of 9.9 GHz covers both low and high frequency (2.9–6.1 and 11.3–18 GHz). The constructed anisotropic hollow and heterointerface nanoprisms can optimize impedance matching for low-frequency absorption (3.8–7.9 GHz) almost completely covering the 5G band. Especially, the influence of hollow path on the interface polarization and ferromagnetic coupling behavior is revealed through the simulation of electric and magnetic field distribution using the High-Frequency Structure Simulator (HFSS). In addition, HFSS simulation shows that the Radar Cross-Sectional (RCS) value of the absorber at any angle is <−10 dB m2, which meets the complex requirements in practical application. This research paves a new way for the development of efficient low-frequency absorbers based on composition and structure design.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410308-sup-0001-SuppMat.docx2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang, C. Liang, R. Che, Adv. Funct. Mater. 2023, 33, 2213258.
- 2X. Tang, Y. Lu, S. Li, M. Zhu, Z. Wang, Y. Li, Z. Hu, P. Zheng, Z. Wang, T. Liu, Nano-Micro Lett. 2025, 17, 82.
- 3X. Wang, H. Zhu, B. Cao, T. Liu, Chem. Eng. J. 2024, 490, 151552.
- 4M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang, R. Zhang, W. You, X. Liu, X. Zhang, R. Che, Adv. Funct. Mater. 2022, 32, 2203161.
- 5B. Wang, Q. Wu, Y. Fu, T. Liu, J. Mater. Sci. Technol. 2021, 86, 91.
- 6H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 2014, 26, 8120.
- 7T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Nanoscale 2014, 6, 2447.
- 8B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang, B. Zhao, M. Huang, X. Wang, H. Lv, R. Che, Nano-Micro Lett. 2022, 14, 170.
- 9B. Wang, Y. Fu, J. Li, Q. Wu, X. Wang, L. Tong, Chem. Eng. J. 2022, 445, 136863.
- 10J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che, Adv. Funct. Mater. 2022, 32, 2200123.
- 11M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang, P. Liu, J. Kong, J. Gu, Adv. Funct. Mater. 2024, 2316691.
- 12Q. Wu, B. Wang, Y. Fu, Z. Zhang, P. Yan, T. Liu, Chem. Eng. J. 2021, 410, 128378.
- 13F. Wu, L. Wan, T. Wang, M. R. Tariq, T. Shah, P. Liu, Q. Zhang, B. Zhang, J. Mater. Sci. Technol. 2022, 117, 36.
- 14J. Liu, L. Zhang, D. Zang, H. Wu, Adv. Funct. Mater. 2021, 31, 2105018.
- 15B. Wang, Y. Fu, J. Li, T. Liu, Carbon 2023, 202, 101.
- 16J. Pan, H. Guo, M. Wang, H. Yang, H. Hu, P. Liu, H. Zhu, Nano Res. 2020, 13, 621.
- 17S. Li, T. Ma, M. Zhu, Y. Lu, X. Tang, W. Li, W. Hong, S. Yang, Y. Li, P. Zheng, X. Zhang, Z. Wang, T. Liu, Compos. Part B-Eng. 2025, 291, 112011.
- 18J. Shu, X. Huang, M. Cao, Carbon 2021, 174, 638.
- 19Y. Tang, P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang, J. Dai, Ceram. Int. 2020, 46, 28250.
- 20Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu, X. Kou, Z. Zou, P. Huang, Y. Wang, D. Xi, P. Yin, G. Su, Z. Fan, Z. Su, D. Xu, L. Pan, L. Xu, J. Mater. Sci. Technol. 2023, 166, 34.
- 21X. Zuo, H. Zhang, C. Zhou, Y. Zhao, H. Huang, N. Wen, C. Sun, Z. Fan, L. Pan, Small 2023, 19, 2301992.
- 22Y. Ren, Y. Zhang, Q. Zheng, L. Wang, W. Jiang, Carbon 2023, 206, 226.
- 23X. Wu, P. Kang, Y. Zhang, H. Guo, S. Yang, Q. Zheng, L. Wang, W. Jiang, J. Mater. Sci. Technol. 2025, 205, 258.
- 24M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 2018, 14, 1800987.
- 25X. Wang, X. Xing, H. Zhu, J. Li, T. Liu, Adv. Colloid Interface Sci. 2023, 318, 102960.
- 26X. Shi, Z. Wu, Z. Liu, J. Lv, Z. Zi, R. Che, J. Mater. Chem. A 2022, 10, 8807.
- 27Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang, R. Yu, J. Shui, Adv. Funct. Mater. 2019, 29, 1807624.
- 28J. He, S. Gao, Y. Zhang, X. Zhang, H. Li, J. Mater. Sci. Technol. 2022, 104, 98.
- 29R. Zhang, L. Wang, C. Xu, C. Liang, X. Liu, X. Zhang, R. Che, Nano Res. 2022, 15, 6743.
- 30X. Zeng, L. Zhu, B. Yang, R. Yu, Mater. Des. 2020, 189, 108517.
- 31N. Li, G. Huang, Y. Li, H. Xiao, Q. Feng, N. Hu, S. Fu, ACS Appl. Mater. Interfaces 2017, 9, 2973.
- 32D. Zhang, J. Cheng, X. Yang, B. Zhao, M. Cao, J. Mater. Sci. 2014, 49, 7221.
- 33Y. Chen, Z. Huang, M. Lu, W. Cao, J. Yuan, D. Zhang, M. Cao, J. Mater. Chem. A 2015, 3, 12621.
- 34F. Wu, P. Liu, J. Wang, T. Shah, M. Ahmad, Q. Zhang, B. Zhang, J. Colloid Interface Sci. 2020, 577, 242.
- 35M. Qin, H. Liang, X. Zhao, H. Wu, J. Colloid Interface Sci. 2020, 566, 347.
- 36P. Liu, V. M. H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L. B. Kong, ACS Appl. Mater. Interfaces 2017, 9, 16404.
- 37M. Qin, L. Zhang, X. Zhao, H. Wu, Adv. Funct. Mater. 2021, 31, 2103436.
- 38L. Yu, X. Lan, C. Wei, X. Li, X. Qi, T. Xu, C. Li, C. Li, Z. Wang, J. Alloy. Compd. 2018, 748, 111.
- 39J. Wang, X. Jia, T. Wang, S. Geng, C. Zhou, F. Yang, X. Tian, L. Zhang, H. Yang, Y. Li, J. Alloy. Compd. 2016, 689, 366.
- 40M. Jiang, L. Ren, Z. Hou, W. Hua, D. Lei, Y. Cao, Y. Zhang, J. Wang, J. Power Sources 2023, 554, 232334.
- 41W. Ren, Z. Zhu, M. Qin, S. Chen, X. Yao, Q. Li, X. Xu, Q. Wei, L. Mai, C. Zhao, Adv Funct. Mater. 2019, 29, 1806405.
- 42Z. Li, X. He, S. Yan, X. Song, W. Qiao, X. Zhang, Y. Du, Acta Phys. Sin. 2016, 65, 147101.
10.7498/aps.65.147101 Google Scholar
- 43B. Cai, L. Zhou, P. Y. Zhao, H. L. Peng, Z. L. Hou, P. Hu, L. M. Liu, G. S. Wang, Nat. Commun. 2024, 15, 3299.
- 44B. Wang, H. Chen, S. Wang, Y. Shi, X. Liu, Y. Fu, T. Liu, Carbon 2021, 184, 223.
- 45J. Li, Q. Wu, X. Wang, B. Wang, T. Liu, J. Colloid Interface Sci. 2022, 628, 10.
- 46W. Wu, R. Xu, Y. Zhou, M. He, P. Lu, R. Wang, Y. Wu, W. Yang, Q. He, X. Bu, Carbon 2021, 178, 144.
- 47Y. Guo, Y. Duan, X. Liu, H. Zhang, T. Yuan, N. Wen, C. Li, H. Pan, Z. Fan, L. Pan, Small 2023, 17, 2308809.
- 48J. Zhou, F. Guo, J. Luo, G. Hao, G. Liu, Y. Hu, G. Zhang, H. Guo, H. Zhou, W. Jiang, J. Mater. Chem. C 2022, 10, 1470.
- 49F. Wang, X. Li, Z. Chen, W. Yu, K. P. Loh, B. Zhong, Y. Shi, Q. Xu, Chem. Eng. J. 2021, 405, 126676.
- 50H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu, Y. Xie, Chem. Eng. J. 2021, 417, 128087.
- 51B. Zhang, Z. Zhong, J. Tang, J. Ye, F. Ye, Z. Zhang, Q. Liu, Ceram. Int. 2023, 49, 6368.
- 52C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang, P. Song, T. Zhang, X. Ye, Y. Yang, W. Gu, J. Zhou, Y. Huang, Small 2020, 16, 2001686.
- 53W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo, L. Deng, N. Mahmood, X. Jian, Nano-Micro Lett. 2021, 13, 161.
- 54X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Chem. Eng. J. 2020, 382, 122980.
- 55T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 2016, 4, 1727.
- 56J. Qiu, Y. Liang, Y. Xiang, M. Zhang, R. Zhao, X. Li, S. Ma, Z. Luo, X. Zhang, X. Sun, Small 2024, 20, 2308270.
- 57B. Wang, M. Ding, C. Shao, J. Yu, H. Kong, D. Zhao, C. Li, Chem. Eng. J. 2023, 465, 142803.
- 58F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B-Eng. 2018, 137, 260.
- 59B. Wang, H. Liao, X. Xie, Q. Wu, T. Liu, J. Colloid Interface Sci. 2020, 578, 346.
- 60B. Wang, Q. Wu, Y. Fu, T. Liu, J. Colloid Interface Sci. 2021, 594, 342.
- 61B. Wang, Y. Fu, J. Li, T. Liu, J. Colloid Interface Sci. 2022, 607, 1540.
- 62M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang, R. Zhang, W. You, X. Liu, X. Zhang, R. Che, Adv. Funct. Mater. 2022, 32, 2203161.
- 63X. Jiang, Q. Xie, G. Lu, Y. Wang, T. Liu, Y. Liu, X. Tao, J. Nai, Small Methods 2022, 6, 2200377.