Nanomaterials-Enabled Sensors for Detecting and Monitoring Chemical Warfare Agents
Corresponding Author
Mohamed Kilani
School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guangzhao Mao
School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052 Australia
School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB UK
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mohamed Kilani
School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guangzhao Mao
School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052 Australia
School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB UK
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Despite their restrictions under international treaties, many chemical warfare agents (CWAs) and their toxic analogues are still used in various industrial sectors such as agriculture and chemical manufacturing. Thus, the need for sensitive and selective CWA detection remains critical. Commercially available detection methods, while accurate, are often bulky, expensive, and require specialized personnel. Sensors incorporating nanomaterials present a promising alternative, offering rapid, portable, and cost-effective detection due to their unique properties, such as high surface area and tunable reactivity. This review covers the four main CWA categories: nerve agents, blister agents, blood agents, and choking agents, highlighting recent progress in nanosensor development for each category. It discusses various sensing mechanisms employed, including fluorescence, colorimetry, chemiresistivity, electrochemistry, and Raman spectroscopy. Despite these advancements, challenges remain, particularly regarding the scalability, stability, and selectivity of nanomaterials-based sensors in complex environments. The review concludes by emphasizing the need to address these challenges and explore novel nanomaterials, the development of scalable nanomanufacturing techniques, and the integration of artificial intelligence to fully unlock the potential of nanomaterials in CWA sensing for homeland security and personal safety.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202409984-sup-0001-SuppMat.docx53.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. F. Hassard, M. S. Nieuwenhuizen, in CBRNE: Challenges in the 21st Century (Eds: P. D. E. Biggins, D. Chana), Springer International Publishing, Cham 2022, p. 17;
10.1007/978-3-031-17374-5_2 Google Scholarb) O. f. t. P. o. C. Weapons, Chemical Weapons Convention – Article II – Definitions and Criteria, https://www.opcw.org/chemical-weapons-convention/articles/article-ii-definitions-and-criteria (accessed: August 2024).
- 2F. Barberi, W. Chelini, G. Marinelli, M. Martini, J. Volcanol. Geotherm. Res. 1989, 39, 125.
- 3E. Broughton, Environ. Health 2005, 4.
- 4A. T. Tu, Natural and Selected Synthetic Toxins 2000, 745, 304.
- 5K. Ganesan, S. K. Raza, R. Vijayaraghavan, J. Pharm. Bioallied Sci. 2010, 2, 166.
- 6a) J. Perry, J. Cotton, M. A. Rahman, S. A. Brumby, Rural Remote Health 2020, 20, 206; b) H. Fu, P. Tan, R. Wang, S. Li, H. Liu, Y. Yang, Z. Wu, J. Hazard. Mater. 2022, 424, 127494; c) W. Zhang, J. P. Giesy, P. Wang, Sci. Total Environ. 2022, 827, 154271.
- 7E. Donna, K. Paula, F. David, T. Mark, Key Planning Factors for Recovery from Chemical Warfare Agent Incidents--Poster (No. SAND2012-6170C). Sandia National Lab.(SNL-CA), Livermore, CA (United States); Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) 2012.
- 8R. Sferopoulos, 2009, https://apps.dtic.mil/sti/tr/pdf/ADA502856.pdf (accessed: December 2024).
- 9 U. S. D. o. H. S. DHS, 2005.
- 10a) N. Colozza, K. Kehe, G. Dionisi, T. Popp, A. Tsoutsoulopoulos, D. Steinritz, D. Moscone, F. Arduini, Biosens. Bioelectron. 2019, 129, 15; b) J. Sun, C. Li, W. Shan, Y. Wei, R. Liu, H. Li, D. Cao, Q. Guo, H. Zhao, R. Liu, Anal. Chem. 2021, 93, 16735; c) M. Lee, M. Y. Kim, J. Kim, C. O. Park, H. E. Choa, S. Y. Lee, M. K. Park, H. Min, K. H. Lee, W. Lee, Sens. Actuators B: Chem. 2023, 386, 133726; d) A. P. Singh, S. Balayan, V. Hooda, R. Sarin, N. Chauhan, Int. J. Biol. Macromol. 2020, 164, 3943; e) K. T. Alali, J. Liu, D. Moharram, J. Yu, Q. Liu, J. Zhu, R. Li, J. Wang, Sens. Actuators B: Chem. 2022, 358, 131475; f) O. J. Achadu, T. Nyokong, Dyes Pigments 2019, 160, 328; g) P. Tang, M. Zhang, B. Ji, T. Yong, G. Sun, Adv. Funct. Mater. 2019, 29, 1905990.
- 11a) Z. Witkiewicz, K. Jasek, M. Grabka, Sensors 2023, 23, 3272;
b) L. Saya, B. Arya, K. Rastogi, M. Verma, S. Rani, P. K. Sahu, M. R. Singh, W. R. Singh, S. Hooda, Talanta 2024, 272, 125785;
c) F. N. Diauudin, J. I. A. Rashid, V. F. Knight, W. M. Z. W. Yunus, K. K. Ong, N. A. M. Kasim, N. A. Halim, S. A. M. Noor, Sens. Bio-Sens. Res. 2019, 26, 100305;
10.1016/j.sbsr.2019.100305 Google Scholard) L. Yang, M. Qin, G. Zhang, J. Yang, J. Yang, J. Zhao, Rev. Anal. Chem. 2023, 42, 20220052; e) E. Butera, A. Zammataro, A. Pappalardo, G. T Sfrazzetto, ChemPlusChem 2021, 86, 681; f) A. Numan, P. S. Singh, A. Alam, M. Khalid, L. Li, S. Singh, A. C. S. omega 2022, 7, 27079; g) R. Santonocito, M. Intravaia, I. M. Caruso, A. Pappalardo, G. T. Sfrazzetto, N. Tuccitto, Nanoscale Adv. 2022, 4, 1926; h) A. Dubey, A. Ahmed, R. Singh, A. Singh, A. K. Sundramoorthy, S. Arya, Int. J. Smart Nano Mater. 2024, 15, 502; i) F. N. Diauudin, J. I. A. Rashid, V. F. Knight, W. M. Z. W. Yunus, K. K. Ong, N. A. M. Kasim, N. A. Halim, S. A. M. Noor, Sensing and Bio-Sensing Research 2019, 26, 100305;10.1016/j.sbsr.2019.100305 Google Scholarj) D. Barreca, C. Maccato, A. Gasparotto, Adv. Mater. Interfaces 2022, 9, 2102525.
- 12M. Ghanei, A. Harandi, in Mustard lung: diagnosis and treatment of respiratory disorders in sulfur-mustard injured patients, Academic Press, San Diego, CA 2016.
- 13G. Pampalakis, S. Kostoudi, Int. J. Mol. Sci. 2023, 24, 8600.
- 14T. T. Marrs, R. L. Maynard, F. Sidell, Chemical warfare agents: toxicology and treatment, 2007.
10.1002/9780470060032 Google Scholar
- 15H. Rice, Chemical Warfare Toxicology, 2016, Vol. 1, p. 81.
10.1039/9781782622413-00081 Google Scholar
- 16S. L. Bartelt-Hunt, D. R. Knappe, M. A. Barlaz, Crit. Rev. Environ. Sci. Technol. 2008, 38, 112.
- 17R. A. Young, C. B. Bast, in Handbook of toxicology of chemical warfare agents, Elsevier, New York 2020, 149.
10.1016/B978-0-12-819090-6.00011-8 Google Scholar
- 18S. Imani, Y. Panahi, J. Salimian, J. Fu, M. Ghanei, Iran. J. Basic Med. Sci. 2015, 18, 723.
- 19a) B. Picard, I. Chataigner, J. Maddaluno, J. Legros, Org. Biomol. Chem. 2019, 17, 6528; b) T. James, S. Wyke, T. Marczylo, S. Collins, T. Gaulton, K. Foxall, R. Amlôt, R. Duarte-Davidson, J. Appl. Toxicol. 2018, 38, 113.
- 20R. C. Gupta, Handbook of toxicology of chemical warfare agents, Academic Press, San Diego, CA 2015.
- 21F. P. Simeonova, L. Fishbein, W. H. Organization, Hydrogen cyanide and cyanides: human health aspects, World Health Organization, Geneva, Switzerland 2004.
- 22F. Sidell, D. Franz, Medical Aspects of Chemical and Biological Warfare 1997.
- 23P. M. McNutt, T. A. Hamilton, M. E. Lyman, M. R. Nelson, in Handbook of Toxicology of chemical warfare agents, Elsevier, New York 2020, p. 567.
10.1016/B978-0-12-819090-6.00036-2 Google Scholar
- 24 Chemical Weapons – UNODA, https://disarmament.unoda.org/wmd/chemical/ (accessed: December 2024).
- 25 Pulmonary Chemical-Warfare Agents – Pulmonary Chemical-Warfare Agents, https://www.msdmanuals.com/professional/injuries-poisoning/mass-casualty-weapons/pulmonary-chemical-warfare-agents (accessed: December 2024).
- 26Y. Seto, in Handbook of toxicology of chemical warfare agents, Elsevier, New York 2020, 983.
10.1016/B978-0-12-819090-6.00057-X Google Scholar
- 27M. K. Jindal, M. Mainuddin, S. Veerabuthiran, A. K. Razdan, IEEE Sens. J. 2020, 21, 4085.
10.1109/JSEN.2020.3030672 Google Scholar
- 28 Gas detector tube system | GASTEC CORPORATION, https://www.gastec.co.jp/en/product/detector_tube/summary/ (accessed: October 2024).
- 29 Dräger | Gas Detection Tubes, https://www.draeger.com/en_seeur/Productfinder/Portable-Gas-Detection/Gas-Detection-Tubes (accessed: October 2024).
- 30 Detection tubes – Oritest, https://www.oritest.cz/en/products/detection/detection-tubes/ (accessed: October 2024).
- 31 Colorimetric Gas Detection Tubes and Pump | Honeywell, https://automation.honeywell.com/au/en/products/sensing-solutions/gas-and-flame-detection/portables/colometric-gas-detection-tubes/colorimetric-gas-detection-tubes-and-pump (accessed: October 2024).
- 32 Hygitest Gas Detector tube, http://hygitest.com/detectoreng.html (accessed: November 2024).
- 33a) Chemical weapon detectors, https://www.proengin.com/en/product/2/chemical-detection (accessed: November 2024); b) Proengin | Military Systems and Technology, https://www.militarysystems-tech.com/suppliers/biological-and-chemical-detection-field-and-real-life/proengin (accessed: November 2024).
- 34 CL 407 – Elico, https://www.elico.co/cl-407 (accessed: December 2024).
- 35 ppbRAE 3000 + | Honeywell, https://automation.honeywell.com/au/en/products/sensing-solutions/gas-and-flame-detection/portables/photoionization-detectors-pid/ppbrae-3000 (accessed: October 2024).
- 36 INFICON MicroFID II portable flame ionization detector, https://www.thebigredguide.com/inficon-microfid-ii-detector-technical-details.html (accessed: October 2024).
- 37 CW Sentry 3G – ENMET, https://enmet.com/products/chemical-warfare-agent-cwa-detectors/cw-sentry-3g (accessed: October 2024).
- 38 RAE Systems Releases New Chemical Warfare Agent Detection System, https://www.securityinfowatch.com/perimeter-security/threat-detection-imaging-inspection/press-release/10555384/rae-systems-rae-systems-releases-new-chemical-warfare-agent-detection-system (accessed: April 2006).
- 39 RAID-P, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ims/raid-p.html (accessed: October 2024).
- 40 RAID-M100 Plus, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ims/raid-m-100.html (accessed: November 2024).
- 41 DE-tector flex, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ims/de-tector-flex.html (accessed: November 2024).
- 42 RoadRunner, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ims/roadrunner.html (accessed: November 2024).
- 43 RAID-S2plus, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ims/raid-s2plus.html (accessed: November 2024).
- 44 DynaSensor | General Dynamics Armament and Technical Products | MRIGlobal CBRNE Tech Index, https://www.cbrnetechindex.com/p/3226/General-Dynamics-Armament-and-Technical-Products/DynaSensor (accessed: October 2024).
- 45 ChemRAE | Honeywell Analytics | MRIGlobal CBRNE Tech Index, https://www.cbrnetechindex.com/p/3422/Honeywell-Analytics/ChemRAE (accessed: October 2024).
- 46 ChemProDM | Environics Oy | MRIGlobal CBRNE Tech Index, https://www.cbrnetechindex.com/p/3183/Environics-Oy/ChemProDM (accessed: October 2024).
- 47 ChemProX | Environics Oy | MRIGlobal CBRNE Tech Index, https://www.cbrnetechindex.com/p/6276/Environics-Oy/ChemProX (accessed: October 2024).
- 48 AIRGARD-CWA-TIC AIRGARD® CWA/TIC, https://www.mks.com/p/AIRGARD-CWA-TIC (accessed: November 2024).
- 49 RAPIDplus, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/ft-ir/rapid-plus.html (accessed: November 2024).
- 50 Griffin G510 Person-Portable G.C.-.M.S. |. Teledyne F. L. I. R. https://www.flir.com.au/products/griffin-g510?vertical=chem+bio&segment=detection (accessed: October 2024).
- 51 MM2, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/gc-ms/mm2.html (accessed: October 2024).
- 52 E2M, https://www.bruker.com/en/products-and-solutions/cbrne-detectors/gc-ms/e2m.html (accessed: November 2024).
- 53W. Frenzel, I. D. McKelvie, Comprehensive Analytical Chemistry 2008, 54, 311.
- 54 Military & CBRN forces, AP2C /AP4C Simtoolkit for CBRN responders, https://www.proengin.com/en/product/10/military-cbrn-forces/17/ap2c-ap4c-simtoolkit (accessed: October 2024).
- 55a) M. Grabka, Z. Witkiewicz, K. Jasek, K. Piwowarski, Sensors 2022, 22, 5607; b) A. Kumar, R. Prajesh, Sens. Actuators A: Phys. 2022, 339, 113498.
- 56M. Aslam, H. Zhang, V. Sreejith, M. Naghdi, S. Ju, Measurement 2023, 222, 113657.
- 57W.-Q. Meng, A. C. Sedgwick, N. Kwon, M. Sun, K. Xiao, X.-P. He, E. V. Anslyn, T. D. James, J. Yoon, Chem. Soc. Rev. 2023, 52, 601.
- 58 µRAIDplus | Bruker Corporation | MRIGlobal CBRNE Tech Index, https://www.cbrnetechindex.com/p/4390/Bruker-Corporation/RAIDplus (accessed: October 2024).
- 59P. Vanninen, H. Lignell, H. A. Heikkinen, H. Kiljunen, O. S. Silva, S. A. Aalto, T. J. Kauppila, Chemical forensics 2020.
- 60S. Schill, R. S. McEwan, R. Moffet, J. Marrero, C. MacDonald, E. Winegar, Spectroscopy 2022, 18, 18.
10.56530/spectroscopy.qz5173x6 Google Scholar
- 61 Person Portable GC-MS, https://www.cttso.gov/Projects/CBRNE/PersonPortableGC-MS.html (accessed: October 2024).
- 62a) Gentex Announces New Nanofiber Sensing Technology, https://ir.gentex.com/news-releases/news-release-details/gentex-announces-new-nanofiber-sensing-technology (accessed: October 2024); b) Chemical Warfare Agent Monitoring – Control Equipment, https://controlequipment.com.au/applications/chemical-warfare-agent-monitoring/ (accessed: October 2024).
- 63a) C. Sun, W. Xiong, W. Ye, Y. Zheng, R. Duan, Y. Che, J. Zhao, Anal. Chem. 2018, 90, 7131; b) G. Heo, R. Manivannan, H. Kim, Y.-A. Son, Dyes Pigments 2019, 171, 107712; c) F. W. Dagnaw, W. Feng, Q.-H. Song, Sens. Actuators B: Chem. 2020, 318, 127937; d) X. Liu, Y. Gong, Y. Zheng, W. Xiong, C. Wang, T. Wang, Y. Che, J. Zhao, Anal. Chem. 2018, 90, 1498; e) Y. Zhang, H. Mu, P. Zheng, Y. Zhao, M. Zhang, Sens. Actuators B: Chem. 2021, 343, 130140; f) J. Singh, J. Parkash, V. Kaur, R. Singh, Sens. Actuators B: Chem. 2019, 298, 126923.
- 64B. C. M. A. Ashwin, C. Saravanan, T. Stalin, P. Muthu Mareeswaran, S. Rajagopal, ChemPhysChem 2018, 19, 2768.
- 65a) B. G. Jeong, D. Y. Park, K. Yang, S.-J. An, C. Park, C. Lee, H. M. Yu, M. S. Jeong, S. M. Lee, J. Korean Phys. Soc. 2019, 75, 827; b) N. Tuccitto, L. Riela, A. Zammataro, L. Spitaleri, G. Li-Destri, G. Sfuncia, G. Nicotra, A. Pappalardo, G. Capizzi, G. Trusso Sfrazzetto, ACS Appl. Nano Mater. 2020, 3, 8182.
- 66X. Yan, D. Kong, R. Jin, X. Zhao, H. Li, F. Liu, Y. Lin, G. Lu, Sens. Actuators B: Chem. 2019, 290, 640.
- 67a) T. Hu, J. Xu, Y. Ye, Y. Han, X. Li, Z. Wang, D. Sun, Y. Zhou, Z. Ni, Biosens. Bioelectron. 2019, 136, 112; b) J. Chen, X. Chen, Q. Huang, W. Li, Q. Yu, L. Zhu, T. Zhu, S. Liu, Z. Chi, ACS Appl. Mater. Interfaces 2019, 11, 32689; c) J. Chen, X. Chen, J. Zhao, S. Liu, Z. Chi, Biosens. Bioelectron. 2020, 170, 112668.
- 68Y. Cai, Z. Qiu, X. Lin, W. Zeng, Y. Cao, W. Liu, Y. Liu, Sens. Actuators B: Chem. 2020, 321, 128481.
- 69F. Takahashi, Y. Kazui, H. Miyaguchi, T. Ohmori, R. Tanaka, J. Jin, Sens. Actuators B: Chem. 2021, 327, 128902.
- 70W. Xiong, Y. Gong, Y. Che, J. Zhao, Anal. Chem. 2019, 91, 1711.
- 71N. Tohora, S. Ahamed, M. Mahato, T. Sultana, J. Chourasia, A. Maiti, S. K. Das, Photochem. Photobiol. Sci. 2024, 23, 763.
- 72a) Y. Hu, X. Lu, X. Jiang, P. Wu, J. Hazard. Mater. 2020, 384, 121368; b) H. Yang, Y. Yang, S. Liu, X. Zhan, H. Zhou, X. Li, Z. Yuan, Anal. Bioanal. Chem. 2020, 412, 5819; c) C. Sun, M. Gradzielski, Analyst 2021, 146, 2152.
- 73a) P. V. Ravi, D. T. Thangadurai, D. Nataraj, K. Senthilkumar, G. Manonmani, N. Kalarikkal, S. Thomas, P. Govindh, ACS Appl. Mater. Interfaces 2019, 11, 19339; b) S.-L. Wang, C.-L. Zhang, Q.-H. Song, J. Mater. Chem. C 2019, 7, 1510; c) X. Cao, Q. Han, Q. Wang, A. Gao, X.-f. Ge, X. Yu, G. Wang, Colloids Surf. A: Physicochem. Eng. Asp. 2021, 629, 127480; d) J. Zhang, Y. Li, J. Hu, Y. Sun, R. Yang, Z. Li, L. Qu, Chem. Eng. J. 2023, 452, 139173; e) B. Sen, S. K. Patra, S. Khatua, Inorg. Chem. 2021, 60, 19175; f) Q. Hu, T. Gong, Y. Mao, Q. Yin, Y. Wang, H. Wang, Spectrochim. Acta – A: Mol. Biomol. Spectrosc. 2021, 253, 119589.
- 74a) E. Jeong, J.-K. Kim, J. Jin, H.-i. Lee, Carbohydr. Polym. 2022, 295, 119845; b) N. Tohora, S. Ahamed, M. Mahato, T. Sultana, M. S. A. S. Shah, S. K. Das, J. Mol. Liq. 2023, 387, 122698; c) N. Tohora, S. Ahamed, T. Sultana, M. Mahato, S. K. Das, Talanta 2024, 266, 124968.
- 75a) P. Tang, H. T. Leung, G. Sun, Anal. Chem. 2018, 90, 14593; b) P. Tang, N. T.-H. Nguyen, J. G. Lo, G. Sun, ACS Appl. Mater. Interfaces 2019, 11, 13632.
- 76K. Shrivas, S. Sahu, B. Sahu, R. Kurrey, T. K. Patle, T. Kant, I. Karbhal, M. L. Satnami, M. K. Deb, K. K. Ghosh, J. Mol. Liq. 2019, 275, 297.
- 77A. Orouji, S. Abbasi-Moayed, M. R. Hormozi-Nezhad, Spectrochim. Acta – A: Mol. Biomol. Spectrosc. 2019, 219, 496.
- 78a) M. Pouzesh, S. Nekouei, M. A. Ferdosi Zadeh, F. Keshtpour, S. Wang, F. Nekouei, Cellulose 2019, 26, 4945;
b) M. L. Budlayan, J. P. Lagare-Oracion, L. D. Rosa, M. J. Rodriguez, J. Manigo, A. Alguno, E. Austria, S. Arco, J. Patricio, C. Deocaris, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021 12, 025007.
10.1088/2043-6262/abffc7 Google Scholar
- 79a) K. Maiti, D. Ghosh, R. Maiti, V. Vyas, P. Datta, D. Mandal, D. K. Maiti, J. Mater. Chem. A 2019, 7, 1756; b) A. P. Vargas, F. Gámez, J. Roales, T. n. Lopes-Costa, J. M. Pedrosa, ACS Sens. 2018, 3, 1627.
- 80H. J. Oh, B. J. Yeang, Y. K. Park, H. J. Choi, J. H. Kim, Y. S. Kang, Y. Bae, J. Y. Kim, S. J. Lim, W. Lee, Polymers 2020, 12, 1585.
- 81a) K. T. Alali, J. Liu, K. Aljebawi, Q. Liu, R. Chen, J. Yu, M. Zhang, J. Wang, J. Alloys Compd. 2019, 780, 680; b) K. T. Alali, J. Liu, K. Aljebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, J. Wang, J. Alloys Compd. 2019, 793, 31; c) K. T. Alali, J. Liu, R. Chen, Q. Liu, H. Zhang, J. Li, J. Hou, R. Li, J. Wang, Chem. – Eur. J. 2019, 25, 11892; d) K. T. Alali, J. Liu, D. Moharram, Q. Liu, J. Yu, R. Chen, R. Li, J. Wang, Sens. Actuators B: Chem. 2020, 314, 128076; e) L. Bigiani, D. Zappa, C. Maccato, E. Comini, D. Barreca, A. Gasparotto, Appl. Surf. Sci. 2020, 512, 145667; f) H. Liu, Y. Shi, T. Wang, Mater. Lett. 2021, 293, 129728; g) K. T. Alali, J. Liu, J. Yu, D. Moharram, R. Chen, H. Zhang, Q. Liu, M. Zhang, J. Wang, J. Alloys Compd. 2020, 832, 154999.
- 82a) N. Kumar, P. Dipak, D. C. Tiwari, R. Tomar, Chem. Phys. Lett. 2020, 755, 137766; b) Q. Zheng, T. Wang, B. Li, R. Gao, X. Zhang, X. Cheng, L. Huo, Z. Major, Y. Xu, Sens. Actuators B: Chem. 2023, 385, 133704; c) B. Yang, D. T. H. To, D. Sobolak, E. R. Mendoza, N. V. Myung, Sens. Actuators B: Chem. 2024, 413, 135741.
- 83L. Bigiani, D. Zappa, D. Barreca, A. Gasparotto, C. Sada, G. Tabacchi, E. Fois, E. Comini, C. Maccato, ACS Appl. Mater. Interfaces 2019, 11, 23692.
- 84a) H. Jung, J. Park, Chem. Phys. Lett. 2022, 793, 139446; b) C. Zhu, X. Li, X. Wang, H. Su, C. Ma, X. Guo, C. Xie, D. Zeng, Front. Mater. Sci. 2022, 16, 220625.
- 85a) J. Sam Jebakumar, A. V. Juliet, Sensors 2020, 20, 5889; b) M. A. Farea, G. B. Bhanuse, H. Y. Mohammed, M. O. Farea, M. Sallam, S. M. Shirsat, M.-L. Tsai, M. D. Shirsat, J. Alloys Compd. 2022, 917, 165397.
- 86A. Singh, P. Dipak, A. Iqbal, A. Samadhiya, S. K. Dwivedi, D. C. Tiwari, R. K. Tiwari, K. N. Pandey, Sci. Rep. 2023, 13, 8074.
- 87a) X. Zheng, H. Fan, H. Wang, B. Yan, J. Ma, W. Wang, A. K. Yadav, W. Dong, S. Wang, Ceram. Int. 2020, 46, 27499; b) L. Yu, Y. Wang, J. Wang, X. Zhao, W. Xing, L. A. Rodrigues, D. A. Reddy, Y. Zhang, H. Zhu, Sens. Actuators A: Phys. 2022, 334, 113362; c) J. Ma, H. Fan, W. Zhang, J. Sui, C. Wang, M. Zhang, N. Zhao, A. K. Yadav, W. Wang, W. Dong, Sens. Actuators B: Chem. 2020, 305, 127456; d) S. Kumar, A. K. Sharma, M. K. Sohal, D. P. Sharma, A. Debnath, D. Aswal, A. Mahajan, Sens. Actuators B: Chem. 2021, 327, 128925; e) A. K. Sharma, A. Debnath, D. Aswal, A. Mahajan, Sens. Actuators A: Chem. 2022, 350, 130870; f) S. Ekar, U. T. Nakate, Y. B. Khollam, S. F. Shaikh, R. S. Mane, A. U. H. S. Rana, M. Palaniswami, Sensors 2022, 22, 4200; g) N. Janudin, N. A. M. Kasim, V. Feizal Knight, M. N. F. Norrrahim, M. A. I. A. Razak, N. Abdul Halim, S. A. Mohd Noor, K. K. Ong, M. H. Yaacob, M. Z. Ahmad, Polymers 2022, 14, 1906; h) N. Janudin, N. A. M. Kasim, V. F. Knight, N. A. Halim, S. A. M. Noor, K. K. Ong, W. M. Z. W. Yunus, M. N. F. Norrrahim, M. S. M. Misenan, M. A. I. A. Razak, J. Sens. 2022, 2022, 1.
- 88X. C. Yu, M. Kilani, A. Siddiqui, G. Z. Mao, Adv. Mater. Technol. 2020, 5, 2000554.
- 89J. Lin, M. Kilani, M. Baharfar, J. Tang, J. Zheng, P. V. Kumar, K. Kalantar-Zadeh, G. Mao, ChemElectroChem 2024, 11, 202300826.
- 90a) N. F. Tyndall, T. H. Stievater, D. A. Kozak, K. Koo, R. A. McGill, M. W. Pruessner, W. S. Rabinovich, S. A. Holmstrom, Opt. Lett. 2018, 43, 4803; b) M. Lafuente, D. Sanz, M. Urbiztondo, J. Santamaría, M. P. Pina, R. Mallada, J. Hazard. Mater. 2020, 384, 121279.
- 91M. Bharathi, C. Byram, D. Banerjee, D. Sarma, B. Barkakaty, V. R. Soma, Bull. Mater. Sci. 2021, 44, 103.
- 92W. Xu, H. Bao, H. Zhang, H. Fu, Q. Zhao, Y. Li, W. Cai, J. Hazard. Mater. 2021, 420, 126668.
- 93M. Proença, M. S. Rodrigues, F. Vaz, J. Borges, IEEE Sens. Lett. 2021, 5, 1.
- 94N. M. Dissanayake, J. S. Arachchilage, T. A. Samuels, S. O. Obare, Talanta 2019, 200, 218.
- 95a) V. Heleg-Shabtai, H. Sharabi, A. Zaltsman, I. Ron, A. Pevzner, Analyst 2020, 145, 6334; b) L. Juhlin, T. Mikaelsson, A. Hakonen, M. S. Schmidt, T. Rindzevicius, A. Boisen, M. Käll, P. O. Andersson, Talanta 2020, 211, 120721.
- 96N. Colozza, K. Kehe, T. Popp, D. Steinritz, D. Moscone, F. Arduini, Environ. Sci. Pollut. Res. 2021, 28, 25069.
- 97S. S. Sandhu, A.-Y. Chang, P. A. I. Fernando, J. F. Morales, N. Tostado, J. Jernberg, L. C. Moores, J. Wang, Sens. Actuators B: Chem. 2023, 375, 132818.
- 98A. Dubey, A. Singh, A. Ahmed, A. K. Sundramoorthy, S. P. Patole, S. Arya, Surf. Interfaces 2024, 51, 104731.
- 99H. Zhang, D. Sun, T. Cao, Int. J. Electrochem. Sci. 2020, 15, 3434.
- 100K. b. Keser, M. C. a. r. Soylu, ACS Omega 2022, 7, 43111.
- 101X. Yang, S. Chen, H. Zhang, Z. Huang, X. Liu, Z. Cheng, T. Li, IEEE Sens. J. 2020, 20, 12096.
- 102J. H. Lee, H. Jung, R. Yoo, Y. Park, H.-S. Lee, Y.-S. Choe, W. Lee, Sens. Actuators B: Chem. 2019, 284, 444.
- 103a) Y.-C. Cai, C. Li, Q.-H. Song, A. C. S. Sens. 2017, 2, 834; b) L. Zhong, H. Li, S.-L. Wang, Q.-H. Song, Sens. Actuators, B 2018, 266, 703.
- 104a) H. M. Aliha, A. A. Khodadadi, Y. Mortazavi, Sens. Actuators B: Chem. 2013, 181, 637; b) L. Patil, V. Deo, M. Shinde, A. Bari, D. Patil, M. Kaushik, Sens. Actuators B: Chem. 2014, 191, 130.
- 105a) R. Rajamanikandan, K. Sasikumar, S. Kosame, H. Ju, Nanomaterials 2023, 13, 290; b) Y. He, M. Jiao, Chemosensors 2024, 12, 55; c) Y. Zhang, J. Liu, C. Rong, D. Wang, W. Li, Z. Gao, Y. Chen, Langmuir 2024, 40, 18821; d) S. You, G. Li, Z. Fan, X. Li, L. Fu, W. Wu, Int. J. Electrochem. Sci. 2023, 18, 100314.
- 106a) R. Moladoust, Chem. Rev. Lett. 2019, 2, 151; b) M. Rouhani, J. Mol. Struct. 2019, 1181, 518; c) P. Snehha, V. Nagarajan, R. Chandiramouli, J. Inorg. Organomet. Polym. Mater. 2019, 29, 954; d) F. Azimi, E. Tazikeh-Lemeski, Russ. J. Phys. Chem. A 2020, 94, 2141; e) B. M. Abraham, Mater. Today Commun 2021, 26, 101901; f) M. Ghadiri, M. Ghambarian, M. Ghashghaee, Mol. Phys. 2021, 119, 1819577; g) R. Rahimi, M. Solimannejad, New J. Chem. 2021, 45, 11574; h) N. Tayebi, F. Shojaie, Phys. Chem. Res. 2021, 9, 107; i) A. L. P. Silva, J. d. J. G. Varela Júnior, J. Inorg. Organomet. Polym. Mater. 2024, 34, 302.
- 107M. Kilani, M. Ahmed, M. Mayyas, Y. F. Wang, K. Kalantar-Zadeh, G. Z. Mao, Small Methods 2023, 7, 2201198.
- 108a) J. M. Williams, M. A. Beno, H. H. Wang, P. C. Leung, T. J. Emge, U. Geiser, K. D. Carlson, Acc. Chem. Res. 1985, 18, 261; b) K. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, O. D. Jurchescu, J. Phys. Chem. C 2014, 2, 3065; c) A. C. Hillier, M. D. Ward, Science 1994, 263, 1261; d) F. Wudl, Acc. Chem. Res. 1984, 17, 227.
- 109L. Ren, X. J. Xian, K. Yan, L. Fu, Y. W. Liu, S. L. Chen, Z. F. Liu, Adv. Funct. Mater. 2010, 20, 1209.
- 110a) P. Jahanian, X. Yu, M. Kilani, G. Mao, Mater. Res. Lett. 2017, 5, 569; b) D. Gunasekera, M. Kilani, X. Yu, Q. Chen, G. Mao, L. Luo, J. Electrochem. Soc. 2019, 166, H63; c) J. C. Lin, M. Kilani, G. Z. Mao, Adv. Mater. Technol. 2023, 8, 2202038; d) L. Li, P. Jahanian, G. Z. Mao, J. Phys. Chem. C 2014, 118, 18771.
- 111C. Wang, N. Wu, D. L. Jacobs, M. Xu, X. Yang, L. Zang, Chem. Commun. 2017, 53, 1132.
- 112C. Jouve, D. Jullien, B. Remaki, Sens. Actuators B: Chem. 1995, 28, 75.
- 113a) Y. Li, W. Zhang, Z. Cui, L. Shi, Y. Shang, Y. Ji, J. Wang, Trends Food Sci. Technol. 2024, 149, 104564;
b) C. L. Arellano Vidal, J. E. Govan, Agronomy 2024, 14, 341;
10.3390/agronomy14020341 Google Scholarc) C. E. Davidson, M. M. Dixon, B. R. Williams, G. K. Kilper, S. H. Lim, R. A. Martino, P. Rhodes, M. S. Hulet, R. W. Miles, A. C. Samuels, ACS Sens. 2020, 5, 1102; d) U. Yaqoob, M. I. Younis, Sensors 2021, 21, 2877.