Bright and Stable Cyan Fluorescent RNA Enables Multicolor RNA Imaging in Live Escherichia coli
Li Jiang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorFangting Zuo
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYuanyuan Pan
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorRuilong Li
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorYajie Shi
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorXinyi Huang
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorDasheng Zhang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorYingping Zhuang
School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYuzheng Zhao
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorQiuning Lin
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorYi Yang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Linyong Zhu
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xianjun Chen
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLi Jiang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorFangting Zuo
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYuanyuan Pan
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorRuilong Li
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorYajie Shi
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorXinyi Huang
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorDasheng Zhang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorYingping Zhuang
School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYuzheng Zhao
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorQiuning Lin
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
Search for more papers by this authorYi Yang
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Linyong Zhu
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xianjun Chen
Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237 China
Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Fluorescent RNAs (FRs), which are RNA aptamers that bind and activate their cognate small fluorogenic dyes, have provided a particularly useful approach for imaging RNAs in live cells. Although the color palette of FRs is greatly expanded, a bright and stable cyan FR with good biocompatibility and biorthogonality with currently available FRs remains desirable but is not yet developed. Herein, the development of Myosotis is described, an RNA aptamer that emits bright cyan fluorescence upon binding a novel GFP chromophore-like fluorophore called DBT. Myosotis has a nanomolar affinity for DBT and shows a weak dependence on magnesium for folding. Further studies reveal that the Myosotis-DBT complex has a long fluorescence lifetime, good photostability, and enhance cellular brightness. It is further shown that Myosotis-DBT is biorthogonal to Pepper and Clivia FRs, allowing multiplex fluorescence imaging of RNA in live bacteria. Myosotis can also use to image mRNA in live bacteria, revealing potential coupling between mRNA translation and stability. It is believed that this cyan FR will be a useful tool for studying the functionality and mechanism of RNA underlying diverse biological processes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data availability statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202405165-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. M. Dean, A. E. Palmer, Nat. Chem. Biol. 2014, 10, 512.
- 2D. M. Chudakov, M. V. Matz, S. Lukyanov, K. A. Lukyanov, Physiol. Rev. 2010, 90, 1103.
- 3a) M. A. Rizzo, G. H. Springer, B. Granada, D. W. Piston, Nat. Biotechnol. 2004, 22, 445; b) A. W. Nguyen, P. S. Daugherty, Nat. Biotechnol. 2005, 23, 355; c) A. J. Lam, F. St-Pierre, Y. Gong, J. D. Marshall, P. J. Cranfill, M. A. Baird, M. R. McKeown, J. Wiedenmann, M. W. Davidson, M. J. Schnitzer, R. Y. Tsien, M. Z. Lin, Nat. Methods 2012, 9, 1005; d) M. Golub, V. Guillon, G. Gotthard, D. Zeller, N. Martinez, T. Seydel, M. M. Koza, C. Lafaye, D. Clavel, D. von Stetten, A. Royant, J. Peters, J. R. Soc. Interface 2019, 16, 20180848.
- 4J. S. Paige, K. Y. Wu, S. R. Jaffrey, Science 2011, 333, 642.
- 5a) M. You, S. R. Jaffrey, Annu. Rev. Biophys. 2015, 44, 187; b) S. C. Alexander, N. K. Devaraj, Biochemistry 2017, 56, 5185; c) X. Lu, K. Y. S. Kong, P. J. Unrau, Chem. Soc. Rev. 2023, 52, 4071.
- 6a) T. P. Constantin, G. L. Silva, K. L. Robertson, T. P. Hamilton, K. Fague, A. S. Waggoner, B. A. Armitage, Org. Lett. 2008, 10, 1561; b) E. V. Dolgosheina, S. C. Jeng, S. S. Panchapakesan, R. Co-jocaru, P. S. Chen, P. D. Wilson, N. Hawkins, P. A. Wiggins, P. J. Unrau, ACS Chem. Biol. 2014, 9, 2412. c) X. Tan, T. P. Constantin, K. L. Sloane, A. S. Waggoner, M. P. Bruchez, B. A. Armitage, J. Am. Chem. Soc. 2017, 139, 9001; d) A. Autour, S, C. Y. Jeng, A, D. Cawte, A. Abdolahzadeh, A. Galli, S. S. S. Panchapakesan, D. Rueda, M. Ryckelynck, P. J. Unrau, Nat. Commun. 2018, 9, 656.
- 7a) K. Eydeler, E. Magbanua, A. Werner, P. Ziegelmuller, U. Hahn, Biophys. J. 2009, 96, 3703; b) A. Murata, S. Sato, Y. Kawazoe, M. Uesugi, Chem. Commun. 2011, 47, 4712; c) M. Sunbul, A. Jaschke, Angew. Chem., Int. Ed. 2013, 52, 13401; d) A. Arora, M. Sunbul, A. Jaschke, Nucleic Acids Res. 2015, 43, 144; e) S. Sato, M. Watanabe, Y. Katsuda, A. Murata, D. O. Wang, M. Uesugi, Angew. Chem., Int. Ed. 2015, 54, 1855; f) M. Sunbul, A. Jaschke, Nucleic Acids Res. 2018, 46, 110; g) M. Sunbul, A. Arora, A. Jaschke, Methods Mol. Biol. 2018, 1649, 289; h) E. Braselmann, A. J. Wierzba, J. T. Polaski, M. Chrominski, Z. E. Holmes, S. T. Hung, D. Batan, J. R. Wheeler, R. Parker, R. Jimenez, D. Gryko, R. T. Batey, A. E. Palmer, Nat. Chem. Biol. 2018, 14, 964. i) F. Bouhedda, K. T. Fam, M. Collot, A. Autour, S. Marzi, A. Klymchenko, M. Ryckelynck, Nat. Chem. Biol. 2020, 16, 69; j) M. Sunbul, J. Lackner, A. Martin, D. Englert, B. Hacene, F. Grun, K. Nienhaus, G. U. Nienhaus, A. Jaschke, Nat. Biotechnol. 2021, 39, 686; k) B. Buhler, J. Schokolowski, A. Benderoth, D. Englert, F. Grun, A. Jaschke, M. Sunbul, Nat. Chem. Biol. 2023, 19, 478.
- 8a) R. Wirth, P. Gao, G. U. Nienhaus M, A. Jaschke, J. Am. Chem. Soc. 2019, 141, 7562; b) J. Zhang, L. Wang, A. Jaschke, M. Sunbul, Angew. Chem., Int. Ed. 2021, 60, 21441. c) D. Englert, E. M. Burger, F. Grun, M. S. Verma, J. Lampe, M. Lackner, B. Buhler, J. Schokolowski, G. U. Nienhaus, A. Jaschke, M. Sunbul, Nat. Commun. 2023, 14, 3879.
- 9a) R. L. Strack, M. D. Disney, S. R. Jaffrey, Nat. Methods 2013, 10, 1219; b) G. S. Filonov, J. D. Moon, N. Svensen, S. R. Jaffrey, J. Am. Chem. Soc. 2014, 136, 16299; c) W. Song, G. S. Filonov, H. Kim, M. Hirsch, X. Li, J. D. Moon, S. R. Jaffrey, Nat. Chem. Biol. 2017, 13, 1187; d) C. Steinmetzger, N. Palanisamy, K. R. Gore, C. Hobartner, Chem 2019, 25, 1931; e) X. Chen, D. Zhang, N. Su, B. Bao, X. Xie, F. Zuo, L. Yang, H. Wang, L. Jiang, Q. Lin, M. Fang, N. Li, X. Hua, Z. Chen, C. Bao, J. Xu, W. Du, L. Zhang, Y. Zhao, L. Zhu, J. Loscalzo, Y. Yang, Nat. Biotechnol. 2019, 37, 1287; f) S. K. Dey, G. S. Filonov, A. O. Olarerin-George, B. T. Jackson, L. W. S. Finley, S. R. Jaffrey, Nat. Chem. Biol. 2022, 18, 180; g) L. Jiang, X. Xie, N. Su, D. Zhang, X. Chen, X. Xu, B. Zhang, K. Huang, J. Yu, M. Fang, B. Bao, F. Zuo, L. Yang, R. Zhang, H. Li, X. Huang, Z. Chen, Q. Zeng, R. Liu, Q. Lin, Y. Zhao, A. Ren, L. Zhu, Y. Yang, Nat. Methods 2023, 20, 1563; h) F. Zuo, L. Jiang, N. Su, Y. Zhang, B. Bao, L. Wang, Y. Shi, H. Yang, X. Huang, R. Li, Q. Zeng, Z. Chen, Q. Lin, Y. Zhuang, Y. Zhao, X. Chen, L. Zhu, Y. Yang, Nat. Chem. Biol. 2024, 20, 1272.
- 10S. Sando, A. Narita, M. Hayami, Y. Aoyama, Chem. Commun. 2008, 3858.
- 11S. C. Lee, J. Heo, H. C. Woo, J. A. Lee, Y. H. Seo, C. L. Lee, S. Kim, O. P. Kwon, Chem. -Eur. J. 2018, 24, 13706.
- 12W. Song, R. L. Strack, N. Svensen, S. R. Jaffrey, J. Am. Chem. Soc. 2014, 136, 1198.
- 13a) X. Li, H. Kim, J. L. Litke, J. Wu, S. R. Jaffrey, Angew. Chem., Int. Ed. 2020, 59, 4511; b) X. Li, J. Wu, S. R. Jaffrey, Angew. Chem., Int. Ed. 2021, 60, 24153.
- 14J. Tyrrell, J. L. McGinnis, K. M. Weeks, G. J. Pielak, Biochemistry 2013, 52, 8777.
- 15a) H. Huang, N. B. Suslov, N. S. Li, S. A. Shelke, M. E. Evans, Y. Koldobskaya, P. A. Rice, J. A. Piccirilli, Nat. Chem. Biol. 2014, 10, 686; b) K. D. Warner, M. C. Chen, W. Song, R. L. Strack, A. Thorn, S. R. Jaffrey, Nat. Struct. Mol. Biol. 2014, 21, 658; c) K. D. Warner, L. Sjekloca, W. Song, G. S. Filonov, S. R. Jaffrey, A. R. Ferre-D'Amare, Nat. Chem. Biol. 2017, 13, 1195; d) R. J. Trachman, A. Autour, S. C. Y. Jeng, A. Abdolahza-deh, A. Andreoni, R. Cojocaru, R. Garipov, E. V. Dolgosheina, J. R. Knutson, M. Ryckelynck, P. J. Unrau, A. R. Ferre-D'Amare, Nat. Chem. Biol. 2019, 15, 472.
- 16M. G. Thompson, N. Sedaghatian, J. F. Barajas, M. Wehrs, C. B. Bailey, N. Kaplan, N. J. Hillson, A. Mukhopadhyay, J. D. Keasling, Sci. Rep. 2018, 8, 1590.
- 17a) K. Nevo-Dinur, A. Nussbaum-Shochat, S. Ben-Yehuda, O. Amster-Choder, Science 2011, 331, 1081; b) M. Irastortza-Olaziregi, O. Amster-Choder, WIREs RNA 2021, 12, 1615.
- 18J.-D. Wen, S.-T. Kuo, H.-H. D. Chou, RNA Biol. 2020, 18, 1489.
- 19M. Tech, B. Morgenstern, P. Meinicke, Nucleic Acids Res. 2006, 34, W588.
- 20G. Boƫl, R. Letso, H. Neely, W. N. Price, K.-H. Wong, M. Su, J. D. Luff, M. Valecha, J. K. Everett, T. B. Acton, R. Xiao, G. T. Montelione, D. P. Aalberts, J. F. Hunt, Nature 2016, 529, 358.
- 21H. Chen, K. Shiroguchi, H. Ge, X. S. Xie, Mol. Syst. Biol. 2015, 11, 781.
- 22K. V. Morris, J. S. Mattick, Nat. Rev. Genet. 2014, 15, 423.
- 23S. C. Jeng, H. H. Chan, E. P. Booy, S. A. McKenna, P. J. Unrau, RNA 2016, 22, 1884.
- 24R. J. Trachman, N. A. Demeshkina, M. W. L. Lau, S. S. S. Panchapakesan, S. C. Y. Jeng, P. J. Unrau, A. R. Ferre-D'Amare, Nat. Chem. Biol. 2017, 13, 807.
- 25J. U. Guo, D. P. Bartel, Science 2016, 353, 6306.
- 26M. D. E. Jepsen, S. M. Sparvath, T. B. Nielsen, A. H. Langvad, G. Grossi, K. V. Gothelf, E. S. Andersen, Nat. Commun. 2018, 9, 18.