VOx Matrix Confinement Approach to Generate Sub-3 nm L10-Pt-Based Intermetallic Catalysts for Fuel Cell Cathode
Yingjie Deng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorLonghai Zhang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorJie Zheng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dai Dang
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiaxi Zhang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorXianrui Gu
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Xue Yang
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorWeiquan Tan
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorLiming Wang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorLong Zeng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorChao Chen
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Tiejun Wang
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiming Cui
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYingjie Deng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorLonghai Zhang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorJie Zheng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dai Dang
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiaxi Zhang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorXianrui Gu
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Xue Yang
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorWeiquan Tan
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorLiming Wang
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorLong Zeng
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorChao Chen
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Tiejun Wang
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiming Cui
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Pt-based intermetallic compounds (IMCs) are considered as a class of promising fuel cell electrocatalysts, owing to their outstanding intrinsic activity and durability. However, the synthesis of uniformly dispersed IMCs with small sizes presents a formidable challenge during the essential high-temperature annealing process. Herein, a facile and generally applicable VOx matrix confinement strategy is demonstrated for the controllable synthesis of ordered L10-PtM (M = Fe, Co, and Mn) nanoparticles, which not only enhances the dispersion of intermetallic nanocrystals, even at high loading (40 wt%), but also simplifies the oxide removal and acid-washing procedures. Taking intermetallic PtCo as an example, the as-prepared catalyst displays a high-performance oxygen reduction activity (mass activity of 1.52 A mgPt−1) and excellent stability in the membrane electrode assemblies (MEAs) (the ECSA has just 7% decay after durability test). This strategy provides an economical and scalable route for the controlled synthesis of Pt-based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202400381-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) K. Jiao, J. Xuan, Q. Du, Z. M. Bao, B. A. Xie, B. W. Wang, Y. Zhao, L. H. Fan, H. Z. Wang, Z. J. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361; b) L. H. Fan, H. Deng, Y. G. Zhang, Q. Du, D. Y. C. Leung, Y. Wang, K. Jiao, Energy Environ. Sci. 2023, 16, 1466; c) L. Huang, S. Zaman, X. L. Tian, Z. T. Wang, W. S. Fang, B. Y. Xia, Acc. Chem. Res. 2021, 54, 311; d) K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Nat. Nanotechnol. 2021, 16, 140.
- 2a) Y. Nie, L. Li, Z. D. Wei, Chem. Commun. 2021, 57, 12898; b) Y. Nie, L. Li, Z. D. Wei, Chem. Soc. Rev. 2015, 44, 2168; c) X. Li, Y. He, S. Cheng, B. Li, Y. Zeng, Z. Xie, Q. Meng, L. Ma, K. Kisslinger, X. Tong, S. Hwang, S. Yao, C. Li, Z. Qiao, C. Shan, Y. Zhu, J. Xie, G. Wang, G. Wu, D. Su, Adv. Mater. 2021, 33, 2106371; d) M. Wei, L. Huang, L. Li, F. Ai, J. Su, J. Wang, ACS Catal. 2022, 12, 6478.
- 3a) H. R. Colón-Mercado, B. N. Popov, J. Power Sources 2006, 155, 253; b) Y. Y. Shao, G. P. Yin, Y. Z. Gao, J. Power Sources 2007, 171, 558; c) J. Li, Z. Xi, Y.-T. Pan, J. S. Spendelow, P. N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y. S. Kim, P. Zhang, S. Sun, J. Am. Chem. Soc. 2018, 140, 2926; d) M. H. Xie, Z. H. Lyu, R. H. Chen, M. Shen, Z. M. Cao, Y. N. Xia, J. Am. Chem. Soc. 2021, 143, 8509.
- 4a) J. X. Zhang, L. H. Zhang, Z. M. Cui, Chem. Commun. 2021, 57, 11; b) Y. C. Yan, J. S. S. Du, K. D. Gilroy, D. R. Yang, Y. N. Xia, H. Zhang, Adv. Mater. 2017, 29, 1605997.
- 5a) J. S. Liang, F. Ma, S. Hwang, X. X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Joule 2019, 3, 956; b) T. W. Song, M. X. Chen, P. Yin, L. Tong, M. Zuo, S. Q. Chu, P. Chen, H. W. Liang, Small 2022, 18, 2202916; c) W. J. Zeng, C. Wang, Q. Q. Yan, P. Yin, L. Tong, H. W. Liang, Nat. Commun. 2022, 13, 7654; d) M. Luo, Y. Sun, L. Wang, S. Guo, Adv. Energy Mater. 2016, 7, 1602073.
- 6a) Q. Gong, H. Zhang, H. Yu, S. Jeon, Y. Ren, Z. Yang, C.-J. Sun, E. A. Stach, A. C. Foucher, Y. Yu, M. Smart, G. M. Filippelli, D. A. Cullen, P. Liu, J. Xie, Matter 2023, 6, 963; b) C. L. Yang, L. N. Wang, P. Yin, J. Y. Liu, M. X. Chen, Q. Q. Yan, Z. S. Wang, S. L. Xu, S. Q. Chu, C. H. Cui, H. X. Ju, J. F. Zhu, Y. Lin, J. L. Shui, H. W. Liang, Science 2021, 374, 459; c) X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
- 7Z. Y. Qi, C. X. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. C. Pei, X. L. Li, L. A. Curtiss, W. Y. Huang, J. Am. Chem. Soc. 2017, 139, 4762.
- 8a) J. Kim, C. B. Rong, Y. Lee, J. P. Liu, S. H. Sun, Chem. Mater. 2008, 20, 7242; b) J. M. Kim, C. B. Rong, J. P. Liu, S. H. Sun, Adv. Mater. 2009, 21, 906.
- 9Z. Y. Chen, C. Hao, B. W. Yan, Q. Y. Chen, H. Y. Feng, X. Q. Mao, J. M. Cen, Z. Q. Tian, P. Tsiakaras, P. K. Shen, Adv. Energy Mater. 2022, 12, 2201600.
- 10a) Q. Cheng, S. Yang, C. Fu, L. Zou, Z. Zou, Z. Jiang, J. Zhang, H. Yang, Energy Environ. Sci. 2022, 15, 278; b) J. Liang, N. Li, Z. Zhao, L. Ma, X. Wang, S. Li, X. Liu, T. Wang, Y. Du, G. Lu, J. Han, Y. Huang, D. Su, Q. Li, Angew. Chem., Int. Ed. 2019, 58, 15471.
- 11a) H. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. Abruna, F. J. DiSalvo, J. Am. Chem. Soc. 2012, 134, 18453; b) S. Zaman, Y. Q. Su, C. L. Dong, R. Qi, L. Huang, Y. Qin, Y. C. Huang, F. M. Li, B. You, W. Guo, Q. Li, S. Ding, B. Y. Xia, Angew. Chem., Int. Ed. 2021, 61, 202115835; c) Y. H. Qian, T. An, K. E. Birgersson, Z. L. Liu, D. Zhao, Small 2018, 14, 1704169.
- 12a) W. Zhao, B. Chi, L. Liang, P. Yang, W. Zhang, X. Ge, L. Wang, Z. Cui, S. Liao, ACS Catal. 2022, 12, 7571; b) W. Y. Zhao, Y. K. Ye, W. J. Jiang, J. Li, H. B. Tang, J. S. Hu, L. Du, Z. M. Cui, S. J. Liao, J. Mater. Chem. A 2020, 8, 15822; c) L. Huang, Y. Q. Su, R. J. Qi, D. Dang, Y. Y. Qin, S. B. Xi, S. Zaman, B. You, S. J. Ding, B. Y. Xia, Angew. Chem., Int. Ed. 2021, 60, 25530; d) P. Yin, S. C. Shen, L. L. Zhang, X. S. Zheng, M. Zuo, Y. W. Ding, H. W. Liang, Cell Rep. Phys. Sci. 2022, 3, 100984.
- 13a) B. T. Zhang, G. T. Fu, Y. T. Li, L. C. Liang, N. S. Grundish, Y. W. Tang, J. B. Goodenough, Z. M. Cui, Angew. Chem., Int. Ed. 2020, 59, 7857; b) X. K. Pan, S. Y. Yu, J. X. Zhang, L. H. Zhang, L. M. Wang, H. Y. Song, L. Du, S. J. Liao, Z. M. Cui, Chem. Mater. 2023, 35, 2559.
- 14J. R. Li, S. Sharma, X. M. Liu, Y. T. Pan, J. S. Spendelow, M. F. Chi, Y. K. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. H. Lin, Z. Y. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Y. Zhu, S. H. Sun, Joule 2019, 3, 124.
- 15Y.-T. Pan, D. Li, S. Sharma, C. Wang, M. J. Zachman, E. C. Wegener, A. J. Kropf, Y. S. Kim, D. J. Myers, A. A. Peterson, D. A. Cullen, J. S. Spendelow, Chem. Catal. 2022, 2, 3559.
- 16a) A. Zeb, X. Xie, A. B. Yousaf, M. Imran, T. Wen, Z. Wang, H. L. Guo, Y. F. Jiang, I. A. Qazi, A. W. Xu, ACS Appl. Mater. Interfaces 2016, 8, 30126; b) J. Yuan, Y. Gan, j. Mou, X. Ma, X. Li, J. Meng, L. Xu, X. Zhang, H. He, J. Liu, Inorg. Chem. Front. 2023, 10, 984; c) D. Skoda, T. Kazda, B. Hanulikova, O. Cech, V. Vykoukal, J. Michalicka, P. Cudek, I. Kuritka, Mater. Chem. Phys. 2022, 278, 125584.
- 17a) D. P. Debecker, P. H. Mutin, Chem. Soc. Rev. 2012, 41, 3624; b) P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, Chem. Mater. 1997, 9, 694.
- 18a) J. Cao, D. Zhang, Y. Yue, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z. Zeng, J. Qin, Y. Huang, ACS Appl. Mater. Interfaces 2022, 14, 7909; b) J. Zhang, W. Deng, Y. Weng, X. Li, H. Mao, W. Zhang, T. Lu, D. Long, F. Jiang, ACS Sustainable Chem. Eng. 2023, 11, 16288; c) F. Xie, W. C. H. Choy, C. Wang, X. Li, S. Zhang, J. Hou, Adv. Mater. 2013, 25, 2051; d) J. Gadient, V. Livingstone, D. Klink, C. R. Grice, C. Lind, J. Sol-Gel Sci. Technol. 2019, 89, 663.
- 19a) S. Li, J. Liu, J. Liang, Z. Lin, X. Liu, Y. Chen, G. Lu, C. Wang, P. Wei, J. Han, Y. Huang, G. Wu, Q. Li, Appl. Catal. B 2023, 320, 122017; b) L. Zhang, J. Zhang, W. Tan, C. Zhong, Y. Tu, H. Song, L. Du, S. Liao, Z. Cui, Nano Lett. 2023, 23, 5187.
- 20Y. Garsany, O. A. Baturina, K. E. Swider-Lyons, S. S. Kocha, Anal. Chem. 2010, 82, 6321.