Atomic Imaging of Multi-Dimensional Ruddlesden–Popper Interfaces in Lead-Halide Perovskites
Yusheng Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorSuya Liu
Shanghai Nanoport, Thermo Fisher Scientific, Building A, No.2537, Jinke Road. Pudong District, Shanghai, China
Search for more papers by this authorLiang Xu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorMengmeng Ma
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXuliang Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiao Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorFei Wei
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBin Song
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorTao Cheng
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Jianyu Yuan
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Boyuan Shen
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYusheng Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorSuya Liu
Shanghai Nanoport, Thermo Fisher Scientific, Building A, No.2537, Jinke Road. Pudong District, Shanghai, China
Search for more papers by this authorLiang Xu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorMengmeng Ma
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXuliang Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiao Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorFei Wei
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBin Song
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorTao Cheng
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Jianyu Yuan
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Boyuan Shen
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Ruddlesden–Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202400013-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Hosokawa, R. Tamaki, T. Sawada, A. Okonogi, H. Sato, Y. Ogomi, S. Hayase, Y. Okada, T. Yano, Nat. Commun. 2019, 10, 43.
- 2J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, G. Conibeer, Nat. Commun. 2017, 8, 14120.
- 3S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 2015, 6, 8056.
- 4R. Li, X. Liu, J. Chen, Exploration 2023, 3, 20220027.
- 5X. Liu, D. Luo, Z.-H. Lu, J. S. Yun, M. Saliba, S. I. Seok, W. Zhang, Nat. Rev. Chem. 2023, 7, 462.
- 6E. Klein, A. Black, O. Tokmak, C. Strelow, R. Lesyuk, C. Klinke, ACS Nano 2019, 13, 6955.
- 7L. Gao, Q. Yan, Sol. RRL 2020, 4, 1900210.
- 8M. Wang, Z. Yang, C. Zhang, Adv. Opt. Mater. 2021, 9, 2002236.
- 9D. Zheng, T. Pauporté, C. Schwob, L. Coolen, Exploration 2023, 4, 20220146.
10.1002/EXP.20220146 Google Scholar
- 10L. Gollino, D. Zheng, N. Mercier, T. Pauporté, Exploration 2023, 4, 20220156.
10.1002/EXP.20220156 Google Scholar
- 11D. Luo, X. Li, A. Dumont, H. Yu, Z.-H. Lu, Adv. Mater. 2021, 33, 2006004.
- 12J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng, Z. Li, K. Meng, G. Chen, T. Huang, S. Xiao, H. Huang, C. Zhou, L. Ding, J. He, J. Huang, Y. Yuan, Nat. Commun. 2020, 11, 582.
- 13A. Z. Chen, M. Shiu, J. H. Ma, M. R. Alpert, D. Zhang, B. J. Foley, D.-M. Smilgies, S.-H. Lee, J. J. Choi, Nat. Commun. 2018, 9, 1336.
- 14A. G. Ricciardulli, S. Yang, J. H. Smet, M. Saliba, Nat. Mater. 2021, 20, 1325.
- 15L. Shen, Y. Yang, T. Zhu, L. Liu, J. Zheng, X. Gong, ACS Appl. Mater. Interfaces 2022, 14, 19469.
- 16N. Tsvetkov, A. Nikolskaia, O. Shevaleevskiy, S. Kozlov, M. Vildanova, B. C. Moon, J. K. Kang, L. Larina, Appl. Surf. Sci. 2020, 512, 145666.
- 17C. Liang, D. Zhao, Y. Li, X. Li, S. Peng, G. Shao, G. Xing, Energy Environ. Mater. 2018, 1, 221.
- 18P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu, S. Peng, Y. Yang, Y. Liang, R. Zhao, S. Zang, Y. Zhang, Y. Song, Angew. Chem., Int. Ed. 2023, 62, e202217910.
- 19Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang, Adv. Mater. 2018, 30, 1703487.
- 20Q. Fu, X. Wong, F. Liu, Y. Dong, Z. Liu, S. Zheng, A. Chaturvedi, J. Zhou, P. Hu, Z. Zhu, F. Bo, Y. Long, Z. Liu, Small 2019, 15, 1902890.
- 21L. Yan, J. Ma, P. Li, S. Zang, L. Han, Y. Zhang, Y. Song, Adv. Mater. 2022, 34, 2106822.
- 22Y. Hong, P. Byeon, J. Bak, Y. Heo, H.-S. Kim, H. B. Bae, S.-Y. Chung, Nat. Commun. 2021, 12, 5527.
- 23D. Giovanni, J. W. M. Lim, Z. Yuan, S. S. Lim, M. Righetto, J. Qing, Q. Zhang, H. A. Dewi, F. Gao, S. G. Mhaisalkar, N. Mathews, T. C. Sum, Nat. Commun. 2019, 10, 3456.
- 24N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu, G. Zheng, Q. Chen, H. Zhou, J. Am. Chem. Soc. 2018, 140, 459.
- 25M. Cha, P. Da, J. Wang, W. Wang, Z. Chen, F. Xiu, G. Zheng, Z.-S. Wang, J. Am. Chem. Soc. 2016, 138, 8581.
- 26A. S. Thind, G. Luo, J. A. Hachtel, M. V. Morrell, S. B. Cho, A. Y. Borisevich, J. Idrobo, Y. Xing, R. Mishra, Adv. Mater. 2019, 31, 1805047.
- 27J. Du, M. Zhang, J. Tian, Int. J. Miner. Metall. Mater. 2022, 29, 49.
- 28K. Song, L. Liu, D. Zhang, M. P. Hautzinger, S. Jin, Y. Han, Adv. Energy Mater. 2020, 10, 1904006.
- 29Y. Zhu, Z. Gui, Q. Wang, F. Meng, S. Feng, B. Han, P. Wang, L. Huang, H.-L. Wang, M. Gu, Nano Energy 2020, 73, 104820.
- 30S. Chen, Y. Zhang, J. Zhao, Z. Mi, J. Zhang, J. Cao, J. Feng, G. Zhang, J. Qi, J. Li, P. Gao, Sci. Bull. 2020, 65, 1643.
- 31S. Chen, J. Wang, S. Thomas, W. J. Mir, B. Shao, J. Lu, Q. Wang, P. Gao, O. F. Mohammed, Y. Han, O. M. Bakr, Nano Lett. 2023, 23, 6002.
- 32M. U. Rothmann, J. S. Kim, J. Borchert, K. B. Lohmann, C. M. O'Leary, A. A. Sheader, L. Clark, H. J. Snaith, M. B. Johnston, P. D. Nellist, L. M. Herz, Science 2020, 370, eabb5940.
- 33S. Chen, C. Wu, B. Han, Z. Liu, Z. Mi, W. Hao, J. Zhao, X. Wang, Q. Zhang, K. Liu, J. Qi, J. Cao, J. Feng, D. Yu, J. Li, P. Gao, Nat. Commun. 2021, 12, 5516.
- 34J.-K. Sun, S. Huang, X.-Z. Liu, Q. Xu, Q.-H. Zhang, W.-J. Jiang, D.-J. Xue, J.-C. Xu, J.-Y. Ma, J. Ding, Q.-Q. Ge, L. Gu, X.-H. Fang, H.-Z. Zhong, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 11705.
- 35S. Cai, J. Dai, Z. Shao, M. U. Rothmann, Y. Jia, C. Gao, M. Hao, S. Pang, P. Wang, S. P. Lau, K. Zhu, J. J. Berry, L. M. Herz, X. C. Zeng, Y. Zhou, J. Am. Chem. Soc. 2022, 144, 1910.
- 36B. Shen, X. Chen, D. Cai, H. Xiong, X. Liu, C. Meng, Y. Han, F. Wei, Adv. Mater. 2020, 32, 1906103.
- 37L. Wang, M. Ma, H. Wang, H. Xiong, X. Chen, F. Wei, B. Shen, ACS Nano 2023, 17, 4740.
- 38B. Shen, X. Chen, K. Shen, H. Xiong, F. Wei, Nat. Commun. 2020, 11, 2692.
- 39B. Shen, X. Chen, H. Wang, H. Xiong, E. G. T. Bosch, I. Lazić, D. Cai, W. Qian, S. Jin, X. Liu, Y. Han, F. Wei, Nature 2021, 592, 541.
- 40B. Shen, X. Chen, X. Fan, H. Xiong, H. Wang, W. Qian, Y. Wang, F. Wei, Nat. Commun. 2021, 12, 2212.
- 41I. Lazić, M. Wirix, M. L. Leidl, F. de Haas, D. Mann, M. Beckers, E. V. Pechnikova, K. Müller-Caspary, R. Egoavil, E. G. T. Bosch, C. Sachse, Nat. Methods 2022, 19, 1126.
- 42M. Ma, L. Wang, H. Wang, H. Xiong, X. Chen, F. Wei, B. Shen, Nano Lett. 2022, 22, 9928.
- 43M. Ma, X. Zhang, L. Xu, X. Chen, L. Wang, T. Cheng, F. Wei, J. Yuan, B. Shen, Adv. Mater. 2023, 35, 2300653.
- 44M. Ma, X. Zhang, X. Chen, H. Xiong, L. Xu, T. Cheng, J. Yuan, F. Wei, B. Shen, Nat. Commun. 2023, 14, 7142.
- 45A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis, J. Even, ACS Nano 2018, 12, 3477.
- 46Q. Cao, P. Li, W. Chen, S. Zang, L. Han, Y. Zhang, Y. Song, Nano Today 2022, 43, 101394.
- 47C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Chem. Mater. 2016, 28, 2852.
- 48X. Li, J. Hoffman, W. Ke, M. Chen, H. Tsai, W. Nie, A. D. Mohite, M. Kepenekian, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 12226.
- 49C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A. D. Mohite, J. Even, T. J. Marks, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 16297.