Multifunctional Heterostructured Fe3O4-FeTe@MCM Electrocatalyst Enabling High-Performance Practical Lithium-Sulfur Batteries Via Built-in Electric Field
Yi-bo Gao
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Guo-qiang Liu
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
Sichuan Vocational and Technical College, Suining, 629000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHai-tao Geng
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorXin He
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Xiang-ming Na
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFu-shuang Liu
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
Search for more papers by this authorBao Li
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorCorresponding Author
Bao Wang
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYi-bo Gao
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Guo-qiang Liu
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
Sichuan Vocational and Technical College, Suining, 629000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHai-tao Geng
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorXin He
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Xiang-ming Na
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFu-shuang Liu
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
Search for more papers by this authorBao Li
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorCorresponding Author
Bao Wang
State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, No. 1 Beierjie, Zhongguancun, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The development of capable of simultaneously modulating the sluggish electrochemical kinetics, shuttle effect, and lithium dendrite growth is a promising strategy for the commercialization of lithium-sulfur batteries. Consequently, an elaborate preparation method is employed to create a host material consisting of multi-channel carbon microspheres (MCM) containing highly dispersed heterostructure Fe3O4-FeTe nanoparticles. The Fe3O4-FeTe@MCM exhibits a spontaneous built-in electric field (BIEF) and possesses both lithophilic and sulfophilic sites, rendering it an appropriate host material for both positive and negative electrodes. Experimental and theoretical results reveal that the existence of spontaneous BIEF leads to interfacial charge redistribution, resulting in moderate polysulfide adsorption which facilitates the transfer of polysulfides and diffusion of electrons at heterogeneous interfaces. Furthermore, the reduced conversion energy barriers enhanced the catalytic activity of Fe3O4-FeTe@MCM for expediting the bidirectional sulfur conversion. Moreover, regulated Li deposition behavior is realized because of its high conductivity and remarkable lithiophilicity. Consequently, the battery exhibited long-term stability for 500 cycles with 0.06% capacity decay per cycle at 5 C, and a large areal capacity of 7.3 mAh cm−2 (sulfur loading: 9.73 mg cm−2) at 0.1 C. This study provides a novel strategy for the rational fabrication of heterostructure hosts for practical Li-S batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202312288-sup-0001-SuppMat.pdf839.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Xue, K. Zhu, W. Gong, J. Pu, X. Li, C. Guo, L. Wu, R. Wang, H. Li, J. Sun, G. Hong, Q. Zhang, Y. Yao, Adv. Energy Mater. 2022, 12.
10.1002/aenm.202200308 Google Scholar
- 2Energy Storage Mater. 2022, 223.
- 3https://doi.org/10.1038/s41467-021-27866-5.
10.1038/s41467?021?27866?5 Google Scholar
- 4W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng, I. Manke, N. Chen, Z. Wu, L. Zhan, Y. Wang, R. Chen, Adv. Mater. 2022, 34, 2106370.
- 5P. Wang, B. Xi, M. Huang, W. Chen, J. Feng, S. Xiong, Adv. Energy Mater. 2021, 11, 2002893.
- 6G. M. Zhou, H. Chen, Y. Cui, Nat. Energy 2022, 7, 312.
- 7Y. Chen, T. Y. Wang, H. J. Tian, D. W. Su, Q. Zhang, G. X. Wang, Adv. Mater. 2021, 33, 67.
- 8L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu, H. Li, J. Niu, L. Wang, A. Wang, J. Liu, X. Lang, G. Wang, W. Li, Q. H. Yang, W. Wang, Adv. Mater. 2022, 34, 2110279.
- 9B. Li, P. Wang, B. Xi, N. Song, X. An, W. Chen, J. Feng, S. Xiong, Nano Res. 2022, 15, 8972.
- 10Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li, Z. Qiao, J. Lin, Q. Wei, L. Wang, Q. Xie, D. L. Peng, Adv. Sci. 2022, 9, 2106004.
- 11M. Zhao, X. Chen, X. Y. Li, B. Q. Li, J. Q. Huang, Adv. Mater. 2021, 33, 2007298.
- 12S. F. Ng, M. Y. L. Lau, W. J. Ong, Adv. Mater. 2021, 33, 2008654.
- 13W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater. 2021, 33, 2101006.
- 14Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. W. Seh, N. Zhang, J. Sun, L. Huang, J. Jiang, J. Zhou, Y. Sun, Energy Storage Mater. 2020, 30, 250.
- 15H. Wang, Y. Wei, G. Wang, Y. Pu, L. Yuan, C. Liu, Q. Wang, Y. Zhang, H. Wu, Adv. Sci. 2022, 9, 2201823.
- 16N. Shi, B. Xi, J. Liu, Z. Zhang, N. Song, W. Chen, J. Feng, S. Xiong, Adv. Funct. Mater. 2022, 32, 2111586.
- 17Q. Liu, Y. Wu, D. Li, Y. Q. Peng, X. Liu, B. Q. Li, J. Q. Huang, H. J. Peng, Adv. Mater. 2022, 35, 2209233.
- 18W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ACS Nano 2021, 15, 7114.
- 19W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.-H. Yang, W. Lv, ACS Nano 2021, 15, 7491.
- 20C. Zhang, R. Du, J. J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Y. Zhou, J. R. Morante, A. Cabot, Adv. Energy Mater. 2021, 11, 2100432.
- 21Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng, J. Wang, S. Deng, Energy Storage Mater. 2021, 38, 381.
- 22J. Liu, Z. Qiao, Q. Xie, D.-L. Peng, R.-J. Xie, Acs Appl. Mater. Inter. 2021, 13, 15226.
- 23B. Qin, Y. Cai, P. Wang, Y. Zou, J. Cao, J. Qi, Energy Storage Mater. 2022, 47, 345.
- 24W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai, Y. Bai, G. Wang, K. Sun, Adv. Mater. 2022, 34, 2202222.
- 25G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang, H. Li, Y. Zhang, X. Wang, Z. Chen, Adv. Funct. Mater. 2022, 32, 2202853.
- 26H. Li, C. Chen, Y. Yan, T. Yan, C. Cheng, D. Sun, L. Zhang, Adv. Mater. 2021, 33, 2105067.
- 27W. Wang, Z. Yang, Y. Zhang, A. Wang, Y. Zhang, L. Chen, Q. Li, S. Qiao, Energy Storage Mater. 2022, 46, 374.
- 28J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang, W. Kuang, X. Chen, G. Duan, L. Yu, Z. Jin, J. Qin, Y. Lei, ACS Nano 2022, 16, 15734.
- 29C. Luo, X. Liang, Y. F. Sun, W. Lv, Y. W. Sun, Z. Y. Lu, W. X. Hua, H. T. Yang, R. C. Wang, C. L. Yan, J. Li, Y. Wan, Q. H. Yang, Energy Storage Mater. 2020, 33, 290.
- 30X. Wang, X. Chen, R. Hou, Q. Zhang, J. Mater. Sci. 2022, 57, 5167.
- 31S. Xin, J. Li, H. Cui, Y. Liu, H. Wei, y. Zhong, M. Wang, Chem. Eng. J. 128153, 2021, 410.
- 32J. Han, Q. Fu, B. Xi, X. Ni, C. Yan, J. Feng, S. Xiong, J. Energy Chem. 2021, 52, 1.
- 33Z. Xu, Z. Wang, M. Wang, H. Cui, Y. Liu, H. Wei, J. Li, Chem. Eng. J. 2021, 422, 130049.
- 34S. Chen, Y. Wang, Y. Wang, W. Fan, J. Guo, J. Chen, Y. Jiang, R. A. A. Al-Yusufi, Z. A. Munir, J. Alloy Compd. 2022, 905, 164267.
- 35B. He, X. C. Wang, L. X. Xia, Y. Q. Guo, Y. W. Tang, Y. Zhao, Q. L. Hao, T. Yu, H. K. Liu, Z. Su, ChemSusChem 2020, 13, 5239.
- 36Y. Xu, J. Mo, G. Xie, D. Ding, S. Ding, X. Wang, C. Li, Chem. Commun. 2019, 55, 6862.
- 37K. Asakawa, Y. Miura, N. Nagatsuka, K. Takeyasu, M. Matsumoto, K. Fukutani, Phys. Rev. B 2019, 99.
10.1103/PhysRevB.99.085442 Google Scholar
- 38K. Yang, D. H. Kim, J. Dho, J. Phys. D: Appl. Phys. 2011, 44, 355301.
10.1088/0022-3727/44/35/355301 Google Scholar
- 39B. Yang, J. Wang, Y. Qi, D. Guo, X. Wang, G. Fang, X. a. Chen, S. Wang, J. Energy Chem. 2023, 77, 376.
- 40J. Li, Z. Wang, K. Shi, Y. Wu, W. Huang, Y. Min, Q. Liu, Z. Liang, Adv. Energy Mater. 2023.
- 41L. Zhou, D. L. Danilov, F. Qiao, J. Wang, H. Li, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2022, 12, 2202094.
- 42H. Li, P. Shi, L. Wang, T. Yan, T. Guo, X. Xia, C. Chen, J. Mao, D. Sun, L. Zhang, Angew. Chem., Int. Ed. 2023, 62, 202216286.
- 43P. Zeng, H. Zou, C. Cheng, L. Wang, C. Yuan, G. Liu, J. Mao, T. S. Chan, Q. Wang, L. Zhang, Adv. Funct. Mater. 2023, 33, 2214770.
- 44Y. Feng, L. Zu, S. Yang, L. Chen, K. Liao, S. Meng, C. Zhang, J. Yang, Adv. Funct. Mater. 2022, 32, 2207579.
- 45J. Lee, C. Choi, J. B. Park, S. Yu, J. Ha, H. Lee, G. Jang, Y. S. Park, J. Yun, H. Im, S. Moon, S. Lee, J.-I. Choi, D.-W. Kim, J. Moon, J. Energy Chem. 2023, 83, 496.
- 46Y. Feng, H. Liu, F. Zhao, Y. Liu, J. Li, X. Liu, Chem. Eng. J. 2021, 409, 128177.
- 47Y. Wen, Z. Shen, J. Hui, H. Zhang, Q. Zhu, Adv. Energy Mater. 2023, 13, 2204345.
- 48B. Qin, Q. Wang, W. Yao, Y. Cai, Y. Chen, P. Wang, Y. Zou, X. Zheng, J. Cao, J. Qi, W. Cai, Energy Environ. Mater. 2023, 6.
- 49X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang, J. Qin, X. Xiong, Y. Lei, ACS Nano 2022, 16, 19959.
- 50Z. Wang, J. Hu, J. Liu, Y. V. Lim, H. Song, Y. Wang, T. He, C. Huang, X. Yan, D. Zhang, S. Huang, Small 2022, 18, 2106716.
- 51A. Singh, V. Kalra, Acs Appl. Mater. Interface 2018, 10, 37937.
- 52R. Sun, M. Qu, L. Peng, W. Yang, Z. Wang, Y. Bai, K. Sun, Small 2023, 19, 2302092.
- 53G. Liu, Q. Zeng, Q. Wu, S. Tian, X. Sun, D. Wang, X. Li, W. Wei, T. Wu, Y. Zhang, Y. Sheng, K. Tao, E. Xie, Z. Zhang, Acs Appl. Mater. Interface 2023, 15, 39384.
- 54Q. Zhang, R. Ao, R. Gao, H. Yang, Inorg. Chem. 2022, 61, 19780.
- 55L. Shen, Y.-W. Song, J. Wang, C.-X. Zhao, C.-X. Bi, S.-Y. Sun, X.-Q. Zhang, B.-Q. Li, Q. Zhang, Small Struct. 2022, 4, 2200205.
10.1002/sstr.202200205 Google Scholar
- 56F. Wang, Y. Han, R. Xu, A. Li, X. Feng, S. Lv, T. Wang, L. Song, J. Li, Z. Wei, Small 2023, 19.
- 57E. Venezia, L. Carbone, F. Bonaccorso, V. Pellegrini, Nanoscale Adv. 2022, 4, 1136.
- 58Y. Wu, D. Li, J. Pan, Y. Sun, W. Huang, M. Wu, B. Zhang, F. Pan, K. Shi, Q. Liu, J. Mater. Chem. A 2022, 10, 16309.
- 59J. Pan, Y. Sun, Y. Wu, J. Li, W. Huang, K. Shi, Y. Lin, H. Dong, Q. Liu, Carbon 2022, 198, 80.
- 60J. Lei, X. X. Fan, T. Liu, P. Xu, Q. Hou, K. Li, R. M. Yuan, M. S. Zheng, Q. F. Dong, J. J. Chen, Nat. Commun. 2022, 13, 10.
- 61Q. Jin, K. Zhao, L. Wu, L. Li, L. Kong, X. Zhang, J. Energy Chem. 2023, 84, 22.
- 62X. Liu, L. Zhang, X. Ma, H. Lu, L. Li, X. Zhang, L. Wu, Chem. Eng. J. 2023, 454, 140460.
- 63J. Zhang, J. Hu, X. Li, L. Yang, L. Yang, J. Lin, J. Huang, G. Xu, Chem. Eng. J. 2023, 456, 140972.
- 64Z. Tong, L. Huang, J. Guo, Y. Gao, H. Zhang, Q. Jia, D. Luo, W. Lei, S. Zhang, Carbon 2022, 187, 451.
- 65X. Qiao, C. Wang, J. Zang, B. Guo, Y. Zheng, R. Zhang, J. Cui, X. Fang, Energy Storage Mater. 2022, 49, 236.