DFT Predirected Molecular Engineering Design of Donor-Acceptor Structured g-C3N4 for Efficient Photocatalytic Tetracycline Abatement
Guangfu Wang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorXiaqing Dong
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Min Cheng
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Liu
School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJun Wang
School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083 China
Search for more papers by this authorHongda Liu
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorYongxi Chen
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorQingkai shi
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorZenglin Ouyang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Xuanming Liu
College of Biology, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuangfu Wang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorXiaqing Dong
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Min Cheng
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Liu
School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJun Wang
School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083 China
Search for more papers by this authorHongda Liu
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorYongxi Chen
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorQingkai shi
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorZenglin Ouyang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Xuanming Liu
College of Biology, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The photocatalytic environmental decontamination ability of carbon nitride (g-C3N4, CN) typically suffers from their inherent structural defects, causing rapid recombination of photogenerated carriers. Conjugating CN with tailored donor–acceptor (D–A) units to counteract this problem through electronic restructuring becomes a feasible strategy, where confirmation by density functional theory (DFT) calculations becomes indispensable. Herein, DFT is employed to predirect the copolymerization modification of CN by benzene derivatives, screening benzaldehyde as the optimal electron-donating candidate for the construction of reoriented intramolecular charge transfer path. Experimental characterization and testing corroborate the formation of a narrowed bandgap as well as high photoinduced carrier separation. Consequently, the optimal BzCN-2 exhibited superior photocatalytic capacity in application for tetracycline hydrochloride degradation, with 3.73 times higher than that of CN. Besides, the BzCN-2-based photocatalytic system is determined to have a toxicity-mitigating effect on TC removal via T.E.S.T and prefers the removal of dissociable TC2− species under partial alkalinity. This work provides insight into DFT guidance for the design of D–A conjugated polymer and its application scenarios in photocatalytic decontamination.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311798-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Ng, I. T. Cousins, J. C. DeWitt, J. Glüge, G. Goldenman, D. Herzke, R. Lohmann, M. Miller, S. Patton, M. Scheringer, X. Trier, Z. Wang, Environ. Sci. Technol. 2021, 55, 12755.
- 2D. Chen, K. Kannan, H. Tan, Z. Zheng, Y.-L. Feng, Y. Wu, M. Widelka, Environ. Sci. Technol. 2016, 50, 5438.
- 3M. D. K. L. Gunathilaka, S. Bao, X. Liu, Y. Li, Y. Pan, Environ. Sci. Technol. 2023, 57, 1199.
- 4L. E. Revell, P. Kuma, E. C. Le Ru, W. R. C. Somerville, S. Gaw, Nature. 2021, 598, 462.
- 5D. Huang, W. Zhou, S. Chen, J. Tao, R. Li, L. Yin, X. Wang, H. Chen, Chemosphere. 2022, 303, 134729.
- 6G. Chen, Y. Yu, L. Liang, X. Duan, R. Li, X. Lu, B. Yan, N. Li, S. Wang, J. Hazard. Mater. 2021, 408, 124461.
- 7G. Zhang, D. Huang, M. Cheng, L. Lei, S. Chen, R. Wang, W. Xue, Y. Liu, Y. Chen, Z. Li, J. Mater. Chem. A. 2020, 8, 17883.
- 8Q. Tang, R. Niu, J. Gong, New J. Chem. 2020, 44, 17405.
- 9C. Tang, M. Cheng, C. Lai, L. Li, X. Yang, L. Du, G. Zhang, G. Wang, L. Yang, Coord. Chem. Rev. 2023, 474, 214846.
- 10Y. Chen, M. Cheng, C. Lai, Z. Wei, G. Zhang, L. Li, C. Tang, L. Du, G. Wang, H. Liu, Small. 2023, 19, 2205902.
- 11J. Kröger, A. Jiménez-Solano, G. Savasci, P. Rovó, I. Moudrakovski, K. Küster, H. Schlomberg, H. A. Vignolo-González, V. Duppel, L. Grunenberg, C. B. Dayan, M. Sitti, F. Podjaski, C. Ochsenfeld, B. V. Lotsch, Adv. Energy Mater. 2021, 11, 2003016.
- 12G. Wang, D. Huang, M. Cheng, S. Chen, G. Zhang, L. Du, L. Lei, Y. Chen, R. Li, Y. Liu, Environ. Sci.: Nano. 2022, 9, 4393.
- 13K. Feng, J. Gong, J. Qu, R. Niu, ACS Appl. Mater. Interfaces. 2022, 14, 44271.
- 14X. Qian, X. Meng, J. Sun, L. Jiang, Y. Wang, J. Zhang, X. Hu, M. Shalom, J. Zhu, ACS Appl. Mater. Interfaces. 2019, 11, 27226.
- 15Z. Xie, X. Yang, P. Zhang, X. Ke, X. Yuan, L. Zhai, W. Wang, N. Qin, C.-X. Cui, L. Qu, X. Chen, Chin. J. Catal. 2023, 47, 171.
- 16X. Fan, L. Zhang, R. Cheng, M. Wang, M. Li, Y. Zhou, J. Shi, ACS Catal. 2015, 5, 5008.
- 17H. Che, C. Liu, G. Che, G. Liao, H. Dong, C. Li, N. Song, C. Li, Nano Energy. 2020, 67, 104273.
- 18Z. Wang, X. Zheng, P. Chen, D. Li, Q. Zhang, H. Liu, J. Zhong, W. Lv, G. Liu, J. Hazard. Mater. 2022, 424, 127379.
- 19C. Zhang, Z. Ouyang, Y. Yang, X. Long, L. Qin, W. Wang, Y. Zhou, D. Qin, F. Qin, C. Lai, Chem. Eng. J. 2022, 448, 137370.
- 20H. Che, C. Li, C. Li, C. Liu, H. Dong, X. Song, Chem. Eng. J. 2021, 410, 127791.
- 21K. Li, W.-D. Zhang, Small. 2018, 14, 1703599.
- 22G. Zhang, Y. Xu, C. He, P. Zhang, H. Mi, Appl. Catal., B. 2021, 283, 119636.
- 23X. Zhang, G. Yang, J. Meng, L. Qin, M. Ren, Y. Pan, Y. Yang, Y. Guo, Small. 2023, 19, 2208012.
- 24R. Shen, L. Zhang, N. Li, Z. Lou, T. Ma, P. Zhang, Y. Li, X. Li, ACS Catal. 2022, 12, 9994.
- 25C. Zhou, D. Huang, P. Xu, G. Zeng, J. Huang, T. Shi, C. Lai, C. Zhang, M. Cheng, Y. Lu, A. Duan, W. Xiong, M. Zhou, Chem. Eng. J. 2019, 370, 1077.
- 26B. Li, H. Song, F. Han, L. Wei, Appl. Catal., B. 2020, 269, 118845.
- 27Z. Wang, H. Wang, Z. Zeng, G. Zeng, P. Xu, R. Xiao, D. Huang, X. Chen, L. He, C. Zhou, Y. Yang, Z. Wang, W. Wang, W. Xiong, Appl. Catal., B. 2020, 267, 118700.
- 28Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, B. Song, H. Yi, S. Ye, X. Ren, Small. 2020, 16, 2001634.
- 29C. Zhang, D. Qin, Y. Zhou, F. Qin, H. Wang, W. Wang, Y. Yang, G. Zeng, Appl. Catal., B. 2022, 303, 120904.
- 30Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, X. Li, B. Li, W. Dong, Y. Zhou, Appl. Catal., B. 2020, 272, 118970.
- 31F. Dong, Z. Wang, Y. Li, W.-K. Ho, S. C. Lee, Environ. Sci. Technol. 2014, 48, 10345.
- 32D. Li, C. Wen, J. Huang, J. Zhong, P. Chen, H. Liu, Z. Wang, Y. Liu, W. Lv, G. Liu, Appl. Catal., B. 2022, 307, 121099.
- 33M. H. Khan, H. Bae, J.-Y. Jung, J. Hazard. Mater. 2010, 181, 659.
- 34J. H. O. S. Pereira, V. J. P. Vilar, M. T. Borges, O. González, S. Esplugas, R. A. R. Boaventura, Sol. Energy. 2011, 85, 2732.
- 35H. Jiang, Q. Wang, P. Chen, H. Zheng, J. Shi, H. Shu, Y. Liu, J. Cleaner Prod. 2022, 339, 130771.
- 36Y. Zeng, X. Zhan, B. Hong, Y. Xia, Y. Ding, T. Cai, K. Yin, X. Wang, L. Yang, S. Luo, Chem. Eng. J. 2023, 452, 139434.
- 37A. Wang, Z. Zheng, H. Wang, Y. Chen, C. Luo, D. Liang, B. Hu, R. Qiu, K. Yan, Appl. Catal., B. 2020, 277, 119171.
- 38M. Wang, J. Kang, S. Li, J. Zhang, Y. Tang, S. Liu, J. Liu, P. Tang, Chem. Eng. J. 2022, 436, 135278.
- 39T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 40G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.