Endogenous Interfacial Mo−C/N−Mo-S Bonding Regulates the Active Mo Sites for Maximized Li+ Storage Areal Capacity
Zeba Khanam
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorTuzhi Xiong
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorFang Yang
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorHailan Su
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorLi Luo
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJieqiong Li
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorMalcolm Koroma
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorBowen Zhou
Ningxiang Country Garden School, 88 Ouzhou South Rd, Changsha, 410600 P. R. China
Search for more papers by this authorMuhammad Mushtaq
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Yongchao Huang
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ting Ouyang
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
M.-Sadeeq Balogun
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZeba Khanam
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorTuzhi Xiong
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorFang Yang
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorHailan Su
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorLi Luo
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJieqiong Li
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorMalcolm Koroma
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorBowen Zhou
Ningxiang Country Garden School, 88 Ouzhou South Rd, Changsha, 410600 P. R. China
Search for more papers by this authorMuhammad Mushtaq
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Yongchao Huang
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ting Ouyang
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
M.-Sadeeq Balogun
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo−C/N−Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2-based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm−2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm−2@0.4 mA cm−2 and 2.7 mAh cm−2@6.0 mA cm−2, respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311773-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S.-H. Park, P. J. King, R. Tian, C. S. Boland, J. Coelho, C. Zhang, P. McBean, N. McEvoy, M. P. Kremer, D. Daly, J. N. Coleman, V. Nicolosi, Nat. Energy 2019, 4, 560.
- 2Y. Chen, B. Zhao, Y. Yang, A. Cao, Adv. Energy Mater. 2022, 12, 2201834.
- 3H. Yang, T. Xiong, Z. Zhu, R. Xiao, X. Yao, Y. Huang, M.-S. Balogun, Carbon Energy 2022, 4, 820.
- 4Z. Liu, X. Liu, B. Wang, X. Wang, D. Lu, D. Shen, Z. Sun, Y. Liu, W. Zhang, Q. Zhang, Y. Li, eScience 2023, 3, 100177.
- 5Y. Yue, H. Liang, Small Methods 2018, 2, 1800056.
- 6S. Jin, Y. Jiang, H. Ji, Y. Yu, Adv. Mater. 2018, 30, 1802014.
- 7M.-S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.-Q. Liu, Y. Tong, Energy Environ. Sci. 2018, 11, 1859.
- 8X. Zhang, Z. Hui, S. King, L. Wang, Z. Ju, J. Wu, K. J. Takeuchi, A. C. Marschilok, A. C. West, E. S. Takeuchi, G. Yu, Nano Lett. 2021, 21, 5896.
- 9R. Elango, A. Demortière, V. De Andrade, M. Morcrette, V. Seznec, Adv. Energy Mater. 2018, 8, 1703031.
- 10Z. Liu, J. Zhu, D. Lu, W. Wang, L. Yue, Y. Li, J. Power Sources 2022, 523, 231046.
- 11L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu, Y. Liu, H. Yang, B. Lu, Energy Stor. Mater. 2019, 16, 37.
- 12F. Chen, D. Shi, M. Yang, H. Jiang, Y. Shao, S. Wang, B. Zhang, J. Shen, Y. Wu, X. Hao, Adv. Funct. Mater. 2021, 31, 2007132.
- 13P. Tang, J. Jiao, Q. Fan, X. Wang, V. Agrawal, Q. Xu, Mater. Chem. Phys. 2021, 261, 124166.
- 14Z. Li, M. Han, Y. Zhang, F. Yuan, Y. Fu, J. Yu, Adv. Sci. 2023, 10, 2207234.
- 15S. Mathialagan, P. G. Priya, Carbon 2020, 158, 756.
- 16X. Zhang, Z. Liu, X. Wei, S. Ali, J. Lang, B. Yang, R. Hu, J. Qi, X. Yan, J. Alloy. Compd. 2023, 966, 171282.
- 17M. Faizan, S. Hussain, D. Vikraman, B. Ali, H.-S. Kim, J. Jung, K.-W. Nam, J. Mater. Res. Technol. 2021, 14, 2382.
- 18J. Xiao, P. Yu, H. Gao, J. Yao, J. Colloid Interface Sci. 2023, 652, 113.
- 19S. Zhu, C. Wang, H. Shou, P. Zhang, P. Wan, X. Guo, Z. Yu, W. Wang, S. Chen, W. Chu, L. Song, Adv. Mater. 2022, 34, 2108809.
- 20T. Ye, K. Ba, X. Yang, T. Xiao, Y. Sun, H. Liu, C. Tang, B. Ge, P. Zhang, T. Duan, Z. Sun, Chem. Eng. J. 2023, 452, 139515.
- 21C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem., Int. Ed. 2018, 57, 1846.
- 22H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science 2017, 356, 599.
- 23F. Wu, M. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, X. Wang, C. Wu, Electrochem. Energy Rev. 2021, 4, 382.
- 24L. Luo, K. Liang, Z. Khanam, X. Yao, M. Mushtaq, T. Ouyang, M.-S. Balogun, Y. Tong, Small 2024, 2307103.
10.1002/smll.202307103 Google Scholar
- 25Z. Ju, Y. Zhu, X. Zhang, D. M. Lutz, Z. Fang, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Chem. Mater. 2020, 32, 1684.
- 26Z. Zhu, J. Li, T. Ouyang, M. S. Balogun, Curr. Opin. Electrochem. 2023, 39, 101260.
- 27Y. Li, C. Ou, J. Zhu, Z. Liu, J. Yu, W. Li, H. Zhang, Q. Zhang, Z. Guo, Nano Lett. 2020, 20, 2034.
- 28Z. Liu, D. Lu, W. Wang, L. Yue, J. Zhu, L. Zhao, H. Zheng, J. Wang, Y. Li, ACS Nano 2022, 16, 4642.
- 29K. Dewangan, S. S. Patil, D. S. Joag, M. A. More, N. S. Gajbhiye, J. Phys. Chem. C 2010, 114, 14710.
- 30M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Angew. Chem. 2016, 128, 6874.
10.1002/ange.201602631 Google Scholar
- 31Y. Zang, S. Niu, Y. Wu, X. Zheng, J. Cai, J. Ye, Y. Xie, Y. Liu, J. Zhou, J. Zhu, X. Liu, G. Wang, Y. Qian, Nat. Commun. 2019, 10, 1217.
- 32M. R, G. Raina, Phys. Scr. 2022, 97, 125808.
10.1088/1402-4896/ac9d6f Google Scholar
- 33Y. Xie, Y. Mu, Electrochim. Acta 2021, 391, 138953.
- 34Z. Zhu, R. Kumar, L. Luo, S. Varjani, P. Huo, J. W. C Wong, J. Zhao, Catal., Sci. Technol. 2022, 12, 6384.
- 35R. Zhang, Y. Qin, P. Liu, C. Jia, Y. Tang, H. Wang, ChemSusChem 2020, 13, 1354.
- 36X. Zhang, Z. Ju, Y. Zhu, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Adv. Energy Mater. 2021, 11, 2000808.
- 37J. Mei, T. Liao, Z. Sun, Energy Environ. Mater. 2022, 5, 115.
- 38A. P. Tiwari, Y. Yoon, T. G. Novak, A. Azam, M. Lee, S. S. Lee, G. H Lee, D. J. Srolovitz, K.-S. An, S. Jeon, Adv. Mater. Interfaces 2019, 6, 1900948.
- 39J. Sun, W. Xu, C. Lv, L. Zhang, M. Shakouri, Y. Peng, Q. Wang, X. Yang, D. Yuan, M. Huang, Y. Hu, D. Yang, L. Zhang, Appl. Catal., B 2021, 286, 119882.
- 40S. Du, L. Ao, J. Tang, K. Jiang, L. Shang, Y. Li, J. Zhang, L. Zhu, Z. Hu, J. Chu, ACS Appl. Energy Mater. 2022, 5, 10056.
- 41Q. Li, M. Xu, T. Wang, H. Wang, J. Sun, J. Sha, Chem. - Eur. J. 2022, 28, e202200207.
- 42T. Xiong, H. Su, F. Yang, Q. Tan, P. B. S. Appadurai, A. A. Afuwape, K. Guo, Y. Huang, Z. Wang, M. S. Balogun, Mater. Today Energy 2020, 17, 100461.
- 43G. Jaysiva, S. Manavalan, S.-M. Chen, P. Veerakumar, M. Keerthi, H.-S. Tu, ACS Sustainable Chem. Eng. 2020, 8, 11088.
- 44Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, C. Li, Adv. Mater. 2017, 29, 1603020.
- 45X.-H. Zhou, Y. Gao, L.-H. Lyu, Y.-Y. Liang, Z.-H. Li, Carbon 2021, 179, 142.
- 46Y. Sun, Y. Zhou, Y. Zhu, Y. Shen, A. Xie, ACS Sustainable Chem. Eng. 2019, 7, 9153.
- 47Z. Liu, J. Huang, B. Liu, D. Fang, T. Wang, Q. Yang, L. Dong, G.-H. Hu, C. Xiong, Energy Storage. Mater. 2020, 24, 138.
- 48H. Chao, H. Qin, M. Zhang, Y. Huang, L. Cao, H. Guo, K. Wang, X. Teng, J. Cheng, Y. Lu, H. Hu, M. Wu, Adv. Funct. Mater. 2021, 31, 2007636.
- 49Y. T. Baheri, M. A. Hedayati, M. Maleki, H. Karimian, J. Energy Storage. 2023, 68, 107682.
10.1016/j.est.2023.107682 Google Scholar
- 50Y. Li, S. Jiang, Y. Qian, X. Yan, J. Zhou, Z. Yi, N. Lin, Y. Qian, Nano Res. 2021, 14, 1061.
- 51D. A. Dinh, T. L. Nguyen, T. V. Cuong, K. S. Hui, T. H. Bui, S. Wu, K. N. Hui, Energy Fuels 2021, 35, 3459.
- 52T. Liu, G. Melinte, O. Dolotko, M. Knapp, B. Mendoza-Sánchez, J. Energy Chem. 2023, 78, 56.
- 53X. Wei, C.-C. Lin, C. Wu, N. Qaiser, Y. Cai, A.-Y. Lu, K. Qi, J.-H. Fu, Y.-H. Chiang, Z. Yang, L. Ding, O. S. Ali, W. Xu, W. Zhang, M. B. Hassine, J. Kong, H.-Y. Chen, V. Tung, Nat. Commun. 2022, 13, 6006.
- 54H. Xu, H. Li, X. Wang, ChemElectroChem 2023, 10, 202201151.
- 55Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem., Int. Ed. 2014, 53, 12794.
- 56T. Xiong, X. Yao, D. Adekoya, H. Yang, M. Sadeeq Balogun, J. Mater. Sci. Technol. 2023, 145, 14.
- 57D. Xin, S. He, X. Han, X. Zhang, Z. Cheng, M. Xia, J. Alloy. Compd. 2022, 921, 166099.
- 58Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M.-S. Balogun, Energy Storage Mater. 2020, 25, 41.
- 59H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong, B. He, R. Wang, H. J. Fan, Energy Storage Mater. 2020, 25, 114.
- 60B. Long, J. Zhang, L. Luo, G. Ouyang, M.-S. Balogun, S. Song, Y. Tong, J. Mater. Chem. A 2019, 7, 2626.
- 61X. Yao, C. Li, R. Xiao, J. Li, H. Yang, J. Deng, M.-S. Balogun, Small 2022, 18, 2204534.
- 62X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang, J. Qin, X. Xiong, Y. Lei, ACS Nano 2022, 16, 19959.
- 63C. Wang, J. Liang, S. Hwang, X. Li, Y. Zhao, K. Adair, C. Zhao, X. Li, S. Deng, X. Lin, X. Yang, R. Li, H. Huang, L. Zhang, S. Lu, D. Su, X. Sun, Nano Energy 2020, 72, 104686.
- 64V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.
- 65V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 66B. L. Vijayan, A. Yasin, I. I. Misnon, Anilkumar, F. Hamed, C.-C. Yang, R. Jose, Energy Fuels 2021, 35, 13438.
- 67S. Du, C. Wu, L. Ao, X. Zhou, K. Jiang, L. Shang, Y. Li, J. Zhang, Z. Hu, J. Chu, Chem. Eng. J. 2021, 420, 127714.
- 68H. Wu, Z. Guo, M. Li, G. Hu, T. Tang, J. Wen, X. Li, H. Huang, Electrochim. Acta 2021, 370, 137758.
- 69L. Han, J. Luo, R. Zhang, W. Gong, L. Chen, F. Liu, Y. Ling, Y. Dong, Z. Yong, Y. Zhang, L. Wei, X. Zhang, Q. Zhang, Q. Li, ACS Nano 2022, 16, 14951.
- 70B. Ranjan, G. K. Sharma, D. Kaur, Appl. Phys. Lett. 2021, 118.
10.1063/5.0048272 Google Scholar