Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy
Chenchen Zhao
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorYuanwei Pan
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorLujie Liu
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorJing Zhang
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorXianjia Wu
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorYu Liu
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
Search for more papers by this authorCorresponding Author
Xing-Zhong Zhao
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lang Rao
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChenchen Zhao
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorYuanwei Pan
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorLujie Liu
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorJing Zhang
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorXianjia Wu
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Search for more papers by this authorYu Liu
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
Search for more papers by this authorCorresponding Author
Xing-Zhong Zhao
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lang Rao
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311702-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) N. Patsoukis, Q. Wang, L. Strauss, V. A. Boussiotis, Sci. Adv. 2020, 6, eabd2712; b) M. Yi, X. Zheng, M. Niu, S. Zhu, H. Ge, K. Wu, Mol. Cancer 2022, 21, 28; c) J. Zhang, F. Dang, J. Ren, W. Wei, Trends Biochem. Sci. 2018, 43, 1014.
- 2a) S. Arora, R. Velichinskii, R. W. Lesh, U. Ali, M. Kubiak, P. Bansal, H. Borghaei, M. J. Edelman, Y. Boumber, Adv. Therapy 2019, 36, 2638; b) P. Sharma, S. Hu-Lieskovan, J. A. Wargo, A. Ribas, Cell 2017, 168, 707.
- 3a) R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, S. Kolahian, T. Javaheri, P. Zare, Cell Commun. Signal. 2020, 18, 59; b) T. Tang, X. Huang, G. Zhang, Z. Hong, X. Bai, T. Liang, Signal Transduct. Target. Ther. 2021, 6, 72.
- 4Q. Liu, Z. Sun, Y. Duo, L. Yin, K. Lv, L. Yue, Q.-F. Meng, D. Nie, J. Chen, D. Luo, L.-P. Liu, L. Rao, ACS Mater. Lett. 2023, 5, 1738.
- 5a) H. Zhang, L. Liu, J. Liu, P. Dang, S. Hu, W. Yuan, Z. Sun, Y. Liu, C. Wang, Mol. Cancer 2023, 22, 58; b) I. Vitale, G. Manic, L. M. Coussens, G. Kroemer, L. Galluzzi, Cell Metab. 2019, 30, 36.
- 6a) O. R. Colegio, N.-Q. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen, V. Jairam, N. Cyrus, C. E. Brokowski, S. C. Eisenbarth, G. M. Phillips, G. W. Cline, A. J. Phillips, R. Medzhitov, Nature 2014, 513, 559; b) R. Noy, J. W. Pollard, Immunity 2014, 41, 49.
- 7a) D. M. Mosser, J. P. Edwards, Nat. Rev. Immunol. 2008, 8, 958; b) Q. Wu, W. Zhou, S. Yin, Y. Zhou, T. Chen, J. Qian, R. Su, L. Hong, H. Lu, F. Zhang, H. Xie, L. Zhou, S. Zheng, Hepatology 2019, 70, 198; c) X. Xiang, J. Wang, D. Lu, X. Xu, Signal Transduct. Target. Ther. 2021, 6, 75.
- 8a) T. Chanmee, P. Ontong, K. Konno, N. Itano, Cancers 2014, 6, 1670; b) D. Hanahan, L. M. Coussens, Cancer Cell 2012, 21, 309; c) Z. Duan, Y. Luo, Signal Transduct. Target. Ther. 2021, 6, 127.
- 9W. Li, F. Wu, S. Zhao, P. Shi, S. Wang, D. Cui, Cytokine Growth Factor Rev. 2022, 67, 49.
- 10Z. Wei, X. Zhang, T. Yong, N. Bie, G. Zhan, X. Li, Q. Liang, J. Li, J. Yu, G. Huang, Y. Yan, Z. Zhang, B. Zhang, L. Gan, B. Huang, X. Yang, Nat. Commun. 2021, 12, 440.
- 11a) E. Ren, C. Liu, P. Lv, J. Wang, G. Liu, Adv. Sci. 2021, 8, 2100460; b) L. Liu, Y. Pan, C. Zhao, P. Huang, X. Chen, L. Rao, ACS Nano 2023, 17, 3225.
- 12a) S. El Andaloussi, I. Mäger, X. O. Breakefield, M. J. A. Wood, Nat. Rev. Drug Discovery 2013, 12, 347; b) R. H. Fang, A. V. Kroll, W. Gao, L. Zhang, Adv. Mater. 2018, 30, 1706759; c) Q.-F. Meng, W. Tai, M. Tian, X. Zhuang, Y. Pan, J. Lai, Y. Xu, Z. Xu, M. Li, G. Zhao, G.-T. Yu, G. Yu, R. Chen, N. Jin, X. Li, G. Cheng, X. Chen, L. Rao, Sci. Adv. 2023, 9, eadg3277; d) D. Tan, W. Zhu, L. Liu, Y. Pan, Y. Xu, Q. Huang, L. Li, L. Rao, Theranostics 2023, 13, 2811.
- 13a) C. Zhao, Y. Pan, G. Yu, X. Z. Zhao, X. Chen, L. Rao, Adv. Mater. 2023, 35, 2207875; b) X. Liu, C. Liu, Z. Zheng, S. Chen, X. Pang, X. Xiang, J. Tang, E. Ren, Y. Chen, M. You, X. Wang, X. Chen, W. Luo, G. Liu, N. Xia, Adv. Mater. 2019, 31, 1808294.
- 14a) Y. W. Choo, M. Kang, H. Y. Kim, J. Han, S. Kang, J. R. Lee, G. J. Jeong, S. P. Kwon, S. Y. Song, S. Go, M. Jung, J. Hong, B. S. Kim, ACS Nano 2018, 12, 8977; b) L. Rao, L. Wu, Z. Liu, R. Tian, G. Yu, Z. Zhou, K. Yang, H. G. Xiong, A. Zhang, G. T. Yu, W. Sun, H. Xu, J. Guo, A. Li, H. Chen, Z. J. Sun, Y. X. Fu, X. Chen, Nat. Commun. 2020, 11, 4909.
- 15a) X. Zhang, C. Wang, J. Wang, Q. Hu, B. Langworthy, Y. Ye, W. Sun, J. Lin, T. Wang, J. Fine, H. Cheng, G. Dotti, P. Huang, Z. Gu, Adv. Mater. 2018, 30, 1707112; b) B. Li, T. Fang, Y. Li, T. Xue, Z. Zhang, L. Li, F. Meng, J. Wang, L. Hou, X. Liang, X. Zhang, Z. Gu, Nano Today 2022, 46, 101606.
- 16Q. F. Meng, Y. Zhao, C. Dong, L. Liu, Y. Pan, J. Lai, Z. Liu, G. T. Yu, X. Chen, L. Rao, Angew. Chem., Int. Ed. 2021, 133, 26524.
10.1002/ange.202108342 Google Scholar
- 17J. Lai, Q.-F. Meng, M. Tian, X. Zhuang, P. Pan, L. Du, L. Deng, J. Tang, N. Jin, L. Rao, Cell Rep. Phys. Sci. 2022, 3, 101061.
- 18a) S. Kumagai, Y. Togashi, T. Kamada, E. Sugiyama, H. Nishinakamura, Y. Takeuchi, K. Vitaly, K. Itahashi, Y. Maeda, S. Matsui, T. Shibahara, Y. Yamashita, T. Irie, A. Tsuge, S. Fukuoka, A. Kawazoe, H. Udagawa, K. Kirita, K. Aokage, G. Ishii, T. Kuwata, K. Nakama, M. Kawazu, T. Ueno, N. Yamazaki, K. Goto, M. Tsuboi, H. Mano, T. Doi, K. Shitara, et al., Nat. Immunol. 2020, 21, 1346; b) D. Ren, Y. Hua, B. Yu, X. Ye, Z. He, C. Li, J. Wang, Y. Mo, X. Wei, Y. Chen, Y. Zhou, Q. Liao, H. Wang, B. Xiang, M. Zhou, X. Li, G. Li, Y. Li, Z. Zeng, W. Xiong, Mol. Cancer 2020, 19, 19.
- 19a) Z. Cheng, M. Li, R. Dey, Y. Chen, J. Hematol. Oncol. 2021, 14, 85; b) X. Zhu, S. Li, Mol. Cancer 2023, 22, 94.
- 20A. Nel, T. Xia, L. Mädler, N. Li, Science 2006, 311, 622.
- 21C. M. Hu, R. H. Fang, K. C. Wang, B. T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C. H. Wen, A. V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S. H. Patel, J. Zhu, W. Shi, F. M. Hofman, T. C. Chen, W. Gao, K. Zhang, S. Chien, L. Zhang, Nature 2015, 526, 118.
- 22a) W. L. Liu, M. Z. Zou, T. Liu, J. Y. Zeng, X. Li, W. Y. Yu, C. X. Li, J. J. Ye, W. Song, J. Feng, X. Z. Zhang, Nat. Commun. 2019, 10, 3199; b) A. V. Kroll, R. H. Fang, Y. Jiang, J. Zhou, X. Wei, C. L. Yu, J. Gao, B. T. Luk, D. Dehaini, W. Gao, L. Zhang, Adv. Mater. 2017, 29, 1703969.
- 23a) H. Tang, Y. Wang, L. K. Chlewicki, Y. Zhang, J. Guo, W. Liang, J. Wang, X. Wang, Y. X. Fu, Cancer Cell 2016, 29, 285; b) C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen, Y. Zhang, E. Ren, L. Zhang, X. Liu, P. Lv, X. Wang, W. Luo, N. Xia, X. Chen, G. Liu, Nat. Nanotechnol. 2022, 17, 531.
- 24a) L. Sun, Y. Su, A. Jiao, X. Wang, B. Zhang, Signal Transduct. Target. Ther. 2023, 8, 235; b) Y. Zhai, J. Wang, T. Lang, Y. Kong, R. Rong, Y. Cai, W. Ran, F. Xiong, C. Zheng, Y. Wang, Y. Yu, H. H. Zhu, P. Zhang, Y. Li, Nat. Nanotechnol. 2021, 16, 1271.
- 25G. Oliveira, C. J. Wu, Nat. Rev. Cancer 2023, 23, 295.
- 26F. Leonard, L. T. Curtis, M. J. Ware, T. Nosrat, X. Liu, K. Yokoi, H. B. Frieboes, B. Godin, Front. Immunol. 2017, 8, 693.
- 27J. Cai, Q. Qi, X. Qian, J. Han, X. Zhu, Q. Zhang, R. Xia, J. Cancer Res. Clin. Oncol. 2019, 145, 1377.
- 28L. Rao, S. K. Zhao, C. Wen, R. Tian, L. Lin, B. Cai, Y. Sun, F. Kang, Z. Yang, L. He, J. Mu, Q. F. Meng, G. Yao, N. Xie, X. Chen, Adv. Mater. 2020, 32, 2004853.
- 29H. Qian, Y. Fu, M. Guo, Y. Chen, D. Zhang, Y. Wei, F. Jin, Q. Zeng, Y. Wang, C. Chai, S. Ding, W. Cheng, T. Chen, Mol. Ther. 2022, 30, 2817.
- 30G. Toda, T. Yamauchi, T. Kadowaki, K. Ueki, STAR Protoc. 2021, 2, 100246.
- 31T. D. Schmittgen, K. J. Livak, Nat. Protoc. 2008, 3, 1101.
- 32D. Wang, C. Liu, S. You, K. Zhang, M. Li, Y. Cao, C. Wang, H. Dong, X. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 41138.