Designing Atomic Interface in Sb2S3/CdS Heterojunction for Efficient Solar Water Splitting
Minji Yang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZeyu Fan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorJinyan Du
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorChao Feng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorRonghua Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBeibei Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorNadiia Pastukhova
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
Search for more papers by this authorMatjaz Valant
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
Search for more papers by this authorMatjaž Finšgar
Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor, SI-2000 Slovenia
Search for more papers by this authorCorresponding Author
Andraž Mavrič
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMinji Yang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZeyu Fan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorJinyan Du
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorChao Feng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorRonghua Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBeibei Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorNadiia Pastukhova
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
Search for more papers by this authorMatjaz Valant
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
Search for more papers by this authorMatjaž Finšgar
Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor, SI-2000 Slovenia
Search for more papers by this authorCorresponding Author
Andraž Mavrič
Materials Research Laboratory, University of Nova Gorica, Vipavska 13, Nova Gorica, SI-5000 Slovenia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In the emerging Sb2S3-based solar energy conversion devices, a CdS buffer layer prepared by chemical bath deposition is commonly used to improve the separation of photogenerated electron-hole pairs. However, the cation diffusion at the Sb2S3/CdS interface induces detrimental defects but is often overlooked. Designing a stable interface in the Sb2S3/CdS heterojunction is essential to achieve high solar energy conversion efficiency. As a proof of concept, this study reports that the modification of the Sb2S3/CdS heterojunction with an ultrathin Al2O3 interlayer effectively suppresses the interfacial defects by preventing the diffusion of Cd2+ cations into the Sb2S3 layer. As a result, a water-splitting photocathode based on Ag:Sb2S3/Al2O3/CdS heterojunction achieves a significantly improved half-cell solar-to-hydrogen efficiency of 2.78% in a neutral electrolyte, as compared to 1.66% for the control Ag:Sb2S3/CdS device. This work demonstrates the importance of designing atomic interfaces and may provide a guideline for the fabrication of high-performance stibnite-type semiconductor-based solar energy conversion devices.
Conflict of Interest
There are no conflicts to declare.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202311644-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, S. I. Seok, Adv. Funct. Mater. 2014, 24, 3587; b) U. A. Shah, S. Chen, G. M. G. Khalaf, Z. Jin, H. Song, Adv. Funct. Mater. 2021, 31, 2100265; c) R. R. Prabhakar, T. Moehl, S. Siol, J. Suh, S. D. Tilley, Chem. Mater. 2020, 32, 7247.
- 2Y.-C. Wang, Y.-Y. Zeng, L.-H. Li, C. Qin, Y.-W. Wang, Z.-R. Lou, F.-Y. Liu, Z.-Z. Ye, L.-P. Zhu, ACS Appl. Energy Mater. 2020, 3, 6188.
- 3a) R. Kondrotas, C. Chen, J. Tang, Joule 2018, 2, 857; b) G. Liang, Z. Li, M. Ishaq, Z. Zheng, Z. Su, H. Ma, X. Zhang, P. Fan, S. Chen, Adv. Energy Mater. 2023, 13, 2300215; c) C. Li, J. He, Y. Xiao, Y. Li, J.-J. Delaunay, Energy Environ. Sci. 2020, 13, 3269.
- 4a) R. Tang, S. Chen, Z.-H. Zheng, J.-T. Luo, P. Fan, X.-H. Zhang, J. Tang, G.-X. Liang, Adv. Mater. 2022, 34, 2109078; b) G.-X. Liang, M. Chen, M. Ishaq, X. Li, R. Tang, Z. Zheng, Z. Su, P. Tan, X. Zhang, S. Chen, Adv. Sci. 2022, 9, 2105142; c) Y. Luo, G. Chen, S. Chen, N. Ahmad, M. Azam, Z. Zheng, Z. Su, M. Cathelinaud, H. Ma, Z. Chen, P. Fan, X. Zhang, G.-X. Liang, Adv. Funct. Mater. 2023, 33, 2213941.
- 5a) M. Yang, Z. Fan, J. Du, R. Li, D. Liu, B. Zhang, K. Feng, C. Feng, Y. Li, ACS Catal. 2022, 12, 8175; b) Y. Mao, Y.-H. Hu, X.-Y. Hu, L.-Q. Yao, H. Li, L.-M. Lin, P. Tang, H. Li, S. Chen, J.-M. Li, Adv. Funct. Mater. 2022, 32, 2208409.
- 6Z. Yang, X. Wang, Y. Chen, Z. Zheng, Z. Chen, W. Xu, W. Liu, Y. Yang, J. Zhao, T. Chen, H. Zhu, Nat. Commun. 2019, 10, 4540.
- 7a) X. Chen, Z. Li, H. Zhu, Y. Wang, B. Liang, J. Chen, Y. Xu, Y. Mai, J. Mater. Chem. C 2017, 5, 9421; b) A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, Sol. Energy 2020, 201, 227.
- 8a) W. Yang, J. Kim, O. Hutter, L. Phillips, J. Tan, J. Park, H. Lee, J. Major, J. Lee, J. Moon, Nat. Commun. 2020, 11, 861; b) S. Wang, Y. Zhao, B. Che, C. Li, X. Chen, R. Tang, J. Gong, X. Wang, G. Chen, T. Chen, J. Li, X. Xiao, Adv. Mater. 2022, 34, 2206242; c) X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, ACS Appl. Mater. Interfaces 2014, 6, 10687; d) S. Chen, T. Liu, M. Chen, M. Ishaq, R. Tang, Z. Zheng, Z. Su, X. Li, X. Qiao, P. Fan, G.-X. Liang, Nano Energy 2022, 99, 107417.
- 9C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, J. Tang, Appl. Phys. Lett. 2015, 107, 043905.
- 10L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Nat. Energy 2017, 2, 17046.
- 11Y. Zhou, Y. Li, J. Luo, D. Li, X. Liu, C. Chen, H. Song, J. Ma, D.-J. Xue, B. Yang, J. Tang, Appl. Phys. Lett. 2017, 111, 013901.
- 12a) S. Chen, T. Liu, M. Chen, M. Ishaq, R. Tang, Z. Zheng, Z. Su, X. Li, X. Qiao, P. Fan, G. Liang, Nat. Energy 2022, 99, 107417; b) X. Jin, Y. Fang, T. Salim, M. Feng, S. Hadke, S. Leow, T. Sum, L. Wong, Adv. Funct. Mater. 2020, 30, 2002887.
- 13Z. Li, X. Liang, G. Li, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. Schropp, Y. Mai, Nat. Commun. 2019, 10, 125.
- 14a) J. L. Pitters, P. G. Piva, X. Tong, R. A. Wolkow, Nano Lett. 2003, 3, 1431; b) J. Zheng, G. Zhu, X. Liu, H. Xie, Y. Lin, Y. Zeng, Y. Zhang, A. Gandi, Z. Qi, Z. Wang, H. Liang, ACS Energy Lett. 2022, 7, 4443.
- 15a) A. R. Meyer, R. P. Chaukulkar, N. Leick, W. Nemeth, D. L. Young, P. Stradins, S. Agarwal, ACS Appl. Nano Mater. 2021, 4, 6629; b) L. Li, L. Ying, Y. Lin, X. Li, X. Zhou, G. Du, Y. Gao, W. Liu, L. Lu, J. Wang, L. Yang, S.-T. Zhang, D. Li, Adv. Funct. Mater. 2022, 32, 2207158; c) L. Giacomazzi, N. S. Shcheblanov, M. E. Povarnitsyn, Y. Li, A. Mavrič, B. Zupančič, J. Grdadolnik, A. Pasquarello, Phys. Rev. Mater. 2023, 7, 045604.
- 16a) N. Pastukhova, A. Mavrič, Y. Li, Adv. Mater. Interfaces 2021, 8, 2002100; b) A. Mavrič, M. Valant, C. Cui, Z. M. Wang, J. Non. Cryst. Solids 2019, 521, 119493.
- 17a) C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 2017, 7, 1706;
b) M. Yang, Y. Li, in Encyclopedia of Solid-Liquid Interfaces, Vol. 3 (Eds: K. Wandelt, G. Bussetti), Elsevier, Amsterdam, The Netherlands 2024, p. 1;
10.1016/B978-0-323-85669-0.00029-5 Google Scholarc) C. Li, Z. Luo, T. Wang, J. Gong, Adv. Mater. 2018, 30, 1707502.
- 18a) M. Chen, Y. Liu, C. Li, A. Li, X. Chang, W. Liu, Y. Sun, T. Wang, J. Gong, Energy Environ. Sci. 2018, 11, 2025; b) F. L. Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. 2011, 2, 737.
- 19a) H. S. Han, S. Shin, D. Kim, I. Park, J. Kim, P.-S. Huang, J.-K. Lee, I. Cho, X. Zheng, Energy Environ. Sci. 2018, 11, 1299; b) Z. Jin, Z. Hu, J. C. Yu, J. Wang, J. Mater. Chem. A 2016, 4, 13736.
- 20a) L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.-J. Zou, Nano Energy 2016, 28, 296; b) D. Huang, K. Wang, L. Li, K. Feng, N. An, S. Ikeda, Y. Kuang, Y. Ng, F. Jiang, Energy Environ. Sci. 2021, 14, 1480.
- 21M. Yang, H. He, J. Du, H. Peng, G. Ke, Y. Zhou, J. Phys. Chem. Lett. 2019, 10, 6159.
- 22Y. F. Tay, S. Hadke, M. Zhang, N. Lim, S. Chiam, L. Wong, J. Mater. Chem. A 2020, 8, 8862.
- 23R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, T. Chen, ACS Appl. Mater. Interfaces 2018, 10, 30314.
- 24Z. Cai, C.-M. Dai, S. Chen, Sol. RRL 2020, 4, 1900503.
- 25W. Lian, C. Jiang, Y. Yin, R. Tang, G. Li, L. Zhang, B. Che, T. Chen, Nat. Commun. 2021, 12, 3260.
- 26a) H.-L. Lu, Y.-B. Li, M. Xu, S.-J. Ding, L. Sun, W. Zhang, L.-K. Wang, Chinese Phys. Lett. 2006, 23, 1929; b) H. J. Kim, K. L. Kearney, L. H. Le, R. T. Pekarek, M. J. Rose, ACS Appl. Mater. Interfaces 2015, 7, 8572.
- 27a) Y. Xiao, C. Feng, J. Fu, F. Wang, C. Li, V. Kunzelmann, C.-M. Jiang, M. Nakabayashi, N. Shibata, I. Sharp, K. Domen, Y. Li, Nat. Catal. 2020, 3, 932; b) J. K. Kim, X. Shi, M. Jeong, J. Park, H. Han, S. Kim, Y. Guo, T. Heinz, S. Fan, C.-L. Lee, J. Park, X. Zheng, Adv. Energy Mater. 2018, 8, 1701765.