A Coordination-Derived Cerium-Based Amorphous–Crystalline Heterostructure with High Electrocatalytic Oxygen Evolution Activity
Haiyan An
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorXijiao Mu
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorGuoying Tan
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorPingru Su
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorLiangliang Liu
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorNan Song
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorShiqiang Bai
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorChun-Hua Yan
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Yu Tang
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 P. R. China
E-mail: [email protected]
Search for more papers by this authorHaiyan An
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorXijiao Mu
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorGuoying Tan
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorPingru Su
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorLiangliang Liu
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorNan Song
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorShiqiang Bai
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorChun-Hua Yan
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Yu Tang
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 P. R. China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous–crystalline heterostructures is significantly more challenging than that of the existing crystalline–crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeOx (a-NiO/c-NiCeOx) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeOx structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeOx to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeOx, exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous–crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen-based intermediates on the Ni sites and lowering the dissociation-related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous–crystalline heterostructure design.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202311505-sup-0001-SuppMat.pdf5.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Xiong, L. Chen, J. Shi, ACS Catal. 2018, 8, 3688.
- 2Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 2017, 117, 10121.
- 3M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal. 2019, 2, 648.
- 4a) C.-X. Zhao, J.-N. Liu, J. Wang, D. Ren, B.-Q. Li, Q. Zhang, Chem. Soc. Rev. 2021, 50, 7745; b) H. Lu, J. Tournet, K. Dastafkan, Y. Liu, Y. H. Ng, S. K. Karuturi, C. Zhao, Z. Yin, Chem. Rev. 2021, 121, 10271.
- 5a) A. Kundu, S. Mallick, S. Ghora, C. R. Raj, ACS Appl. Mater. Interfaces 2021, 13, 40172; b) C. Yang, Y. Lu, L. Zhang, Z. Kong, T. Yang, L. Tao, Y. Zou, S. Wang, J. Mater. Chem. A 2021, 2, 2100058; c) T. Wang, X. Cao, L. Jiao, Angew. Chem., Int. Ed. 2022, 61, 202213328.
- 6a) Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 2020, 4, 243; b) Y. Zhang, F. Gao, D. Wang, Z. Li, X. Wang, C. Wang, K. Zhang, Y. Du, Coord. Chem. Rev. 2023, 475, 214916; c) X. Bu, D. Yin, D. Chen, Q. Quan, Z. Yang, S. Yip, C.-Y. Wong, X. Wang, J. C. Ho, Small 2023, 19, 2304546.
- 7H. Zhao, F. Li, S. Wang, L. Guo, Acc. Mater. Res 2021, 2, 804.
- 8J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang, L. Guo, Adv. Energy Mater. 2015, 5, 1401880.
- 9a) S. Anantharaj, S. Noda, Small 2020, 16, 1905779; b) A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J. F. de Araújo, T. Reier, H. Dau, P. Strasser, Nat. Commun. 2015, 6, 8625.
- 10a) Z. Gong, R. Liu, H. Gong, G. Ye, J. Liu, J. Dong, J. Liao, M. Yan, J. Liu, K. Huang, L. Xing, J. Liang, Y. He, H. Fei, ACS Catal. 2021, 11, 12284; b) Z. Wang, Y. Song, J. Wang, Y. Lin, J. Meng, W. Cui, X.-X. Liu, Angew. Chem., Int. Ed. 2023, 62, 202216290; c) L. Jin, R. Ji, H. Wan, J. He, P. Gu, H. Lin, Q. Xu, J. Lu, ACS Catal. 2023, 13, 837; d) G. Shi, C. Arata, D. A. Tryk, T. Tano, M. Yamaguchi, A. Iiyama, M. Uchida, K. Iida, S. Watanabe, K. Kakinuma, ACS Omega 2023, 8, 13068; e) W.-J. Jiang, S. Niu, T. Tang, Q.-H. Zhang, X.-Z. Liu, Y. Zhang, Y.-Y. Chen, J.-H. Li, L. Gu, L.-J. Wan, J.-S. Hu, Angew. Chem., Int. Ed. 2017, 56, 6572; f) J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou, Z. Shao, Adv. Sci. 2018, 5, 1800514; g) H. Sheng, H. Qu, B. Zeng, Y. Li, C. Xia, C. Li, L. Cao, B. Dong, Small 2023, 19, 2300876.
- 11Z. Bao, Z. Yao, C. Zhu, Y. Liu, S. Zhang, J. Zhao, L. Ding, Z. Xu, X. Zhong, Y. Zhu, J. Wang, Small 2023, 19, 2302380.
- 12C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem., Int. Ed. 2018, 57, 6073.
- 13Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen, J. Zhang, X. Zheng, Y. Deng, W. Hu, Angew. Chem., Int. Ed. 2023, 62, 202215256.
- 14a) P.-F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu, Q. Ma, Q. Yun, X. Zhang, H. Cheng, Q. Lu, B. Chen, Y. Chen, Z. Zhang, J. Huang, D. Hu, J. Wang, Q. Liu, Z. Luo, Z. Liu, Y. Ge, X.-J. Wu, X.-W. Du, H. Zhang, Adv. Mater. 2020, 32, 2000482; b) M. Kuang, J. Zhang, D. Liu, H. Tan, K. N. Dinh, L. Yang, H. Ren, W. Huang, W. Fang, J. Yao, X. Hao, J. Xu, C. Liu, L. Song, B. Liu, Q. Yan, Adv. Energy Mater. 2020, 10, 2002215; c) C. Ye, H. Cheng, L. Zheng, J. Lin, Q. Xu, Y. Qiu, Z. Pan, Y. Qiu, Nano Lett. 2023, 23, 1573; d) H. Zhang, Y. Zhou, M. Xu, A. Chen, Z. Ni, O. Akdim, T. Wågberg, X. Huang, G. Hu, ACS Nano 2023, 17, 636.
- 15a) N. Yang, H. Cheng, X. Liu, Q. Yun, Y. Chen, B. Li, B. Chen, Z. Zhang, X. Chen, Q. Lu, J. Huang, Y. Huang, Y. Zong, Y. Yang, L. Gu, H. Zhang, Adv. Mater. 2018, 30, 1803234; b) J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu, B. Chen, C. Tan, P.-F. Yin, H.-X. Zheng, Q.-Q. Li, S. Chen, W. Xu, X. Wang, G. Wu, R. Sun, X.-H. Shan, X. Hong, H. Zhang, Adv. Mater. 2021, 33, 2006711.
- 16L. Cai, B. Yan, Q. Xue, J. Li, P. Liu, X. Qi, G. Yang, J. Mater. Chem. A 2022, 10, 18939.
- 17F.-L. Wang, X. Y.u Zhang, J.-C. Zhou, Z.-N. Shi, B. Dong, J.-Y. Xie, Y.-W. Dong, J.-F. Yu, Y.-M. Chai, Inorg. Chem. Front. 2022, 9, 2068.
- 18X. Wang, J. Li, Q. Xue, X. Han, C. Xing, Z. Liang, P. Guardia, Y. Zuo, R. Du, L. Balcells, J. Arbiol, J. Llorca, X. Qi, A. Cabot, ACS Nano 2023, 17, 825.
- 19Y. Li, W. Ma, H. Yang, Q. Tian, Q. Xu, B. Han, Chem. Commun. 2022, 58, 6833.
- 20L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Angew. Chem., Int. Ed. 2021, 60, 18821.
- 21X. Shi, X. Zheng, H. Wang, H. Zhang, M. Qin, B. Lin, M. Qi, S. Mao, H. Ning, R. Yang, L. Xi, Y. Wang, Adv. Funct. Mater. 2023, 33, 2307109.
- 22X. Wang, Y. Tang, J.-M. Lee, G. Fu, Chem Catal 2022, 2, 967.
- 23a) Y. Shen, T. Pan, L. Wang, Z. Ren, W. Zhang, F. Huo, Adv. Mater. 2021, 33, 2007442; b) Y. Liu, Y. Wang, S. Zhao, Z. Tang, Small Methods 2022, 6, 2200773; c) D. Liu, J. Wan, G. Pang, Z. Tang, Adv. Mater. 2019, 31, 1803291.
- 24X. Shi, B. Cao, J. Liu, J. Zhang, Y. Du, Small 2021, 17, 2005371.
- 25A. Farahmand Kateshali, S. Gholizadeh Dogaheh, J. Soleimannejad, A. J. Blake, Coord. Chem. Rev. 2020, 419, 213392.
- 26Y. Song, P. C. Lan, K. Martin, S. Ma, Nanoscale Adv 2021, 3, 4891.
- 27a) W. Liu, P. Bai, S. Wei, C. Yang, L. Xu, Angew. Chem., Int. Ed. 2022, 61, 202201166; b) S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2020, 59, 10651.
- 28L. Barrio, A. Kubacka, G. Zhou, M. Estrella, A. Martínez-Arias, J. C. Hanson, M. Fernández-García, J. A. Rodriguez, J. Phys. Chem. C 2010, 114, 12689.
- 29J. Wei, X. Mu, Y. Hu, L. Liu, X. Wu, Q. Liu, T. Zhang, Y. Peng, J. Cao, C.-H. Yan, Y. Tang, Angew. Chem., Int. Ed. 2023, 62, 202302986.
- 30J. Paier, C. Penschke, J. Sauer, Chem. Rev. 2013, 113, 3949.
- 31J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu, L. Guo, Chem. Rev. 2023, 123, 8859.
- 32G. Zhou, L. Barrio, S. Agnoli, S. D. Senanayake, J. Evans, A. Kubacka, M. Estrella, J. C. Hanson, A. Martínez-Arias, M. Fernández-García, J. A. Rodriguez, Angew. Chem. 2010, 49, 9680.
- 33L. Y. Zhang, Y. Ouyang, S. Wang, D. Wu, M. Jiang, F. Wang, W. Yuan, C. M. Li, Small 2019, 15, 1904245.
- 34K. Zheng, Y. Li, B. Liu, F. Jiang, Y. Xu, X. Liu, Angew. Chem., Int. Ed. 2022, 61, 202210991.
- 35J. Yu, Q. Cao, Y. Li, X. Long, S. Yang, J. K. Clark, M. Nakabayashi, N. Shibata, J.-J. Delaunay, ACS Catal. 2019, 9, 1605.
- 36Z. Huang, X. Liao, W. Zhang, J. Hu, Q. Gao, ACS Catal. 2022, 12, 13951.
- 37a) L. Li, F. Chen, J.-Q. Lu, M.-F. Luo, J. Phys. Chem. A 2011, 115, 7972; b) T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, M. Yoshimura, J. Phys. Chem. C 2009, 113, 19789.
- 38W. Liu, C. Ni, M. Gao, X. Zhao, W. Zhang, R. Li, K. Zhou, ACS Nano 2023, 17, 24564.
- 39Y. Xie, J. Chen, X. Wu, J. Wen, R. Zhao, Z. Li, G. Tian, Q. Zhang, P. Ning, J. Hao, ACS Catal. 2022, 12, 10587.
- 40C. Yang, C. Pei, R. Luo, S. Liu, Y. Wang, Z. Wang, Z.-J. Zhao, J. Gong, J. Am. Chem. Soc. 2020, 142, 19523.
- 41C. Ni, H. Zheng, W. Liu, L. Wu, R. Li, K. Zhou, W. Zhang, Adv. Funct. Mater. 2023, 33, 2301075.
- 42C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Chem. Soc. Rev. 2019, 48, 2518.
- 43S. Zhao, Y. Yang, Z. Tang, Angew. Chem., Int. Ed. 2022, 61, 202110186.
- 44B. J. Trześniewski, O. Diaz-Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. M. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112.
- 45E. del Corro, M. Taravillo, V. G. Baonza, Phys. Rev. B 2012, 85, 033407.
- 46a) M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329; b) C. Kuai, Y. Zhang, L. Han, H. L. Xin, C.-J. Sun, D. Nordlund, S. Qiao, X.-W. Du, F. Lin, J. Mater. Chem. A 2020, 8, 10747.
- 47K. Zhu, X. Zhu, W. Yang, Angew. Chem., Int. Ed. 2019, 58, 1252.
- 48a) S. Shen, Z. Wang, Z. Lin, K. Song, Q. Zhang, F. Meng, L. Gu, W. Zhong, Adv. Mater. 2022, 34, 2110631; b) Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang, M. H. Rummeli, P. Strasser, R. Yang, Adv. Energy Mater. 2021, 11, 2100110.
- 49L. C. Jacobson, V. Molinero, J. Am. Chem. Soc. 2011, 133, 6458.
- 50A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.