NiCo2O4 Nanowires Immobilized on Nitrogen-Doped Ti3C2Tx for High-Performance Wearable Magnesium–Air Batteries
Corresponding Author
Aniu Qian
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMiaomiao Cui
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYue Sun
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorGuangyu Wang
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYuehui Hao
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorChengli Yang
Shanxi Dadi Environment Investment Holdings Co., Ltd., Taiyuan, 030006 China
Search for more papers by this authorCorresponding Author
Hu Shi
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Aniu Qian
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMiaomiao Cui
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYue Sun
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorGuangyu Wang
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYuehui Hao
Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorChengli Yang
Shanxi Dadi Environment Investment Holdings Co., Ltd., Taiyuan, 030006 China
Search for more papers by this authorCorresponding Author
Hu Shi
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Flexible magnesium (Mg)–air batteries provide an ideal platform for developing efficient energy-storage devices toward wearable electronics and bio-integrated power sources. However, high-capacity bio-adaptable Mg–air batteries still face the challenges in low discharge potential and inefficient oxygen electrodes, with poor kinetics property toward oxygen reduction reaction (ORR). Herein, spinel nickel cobalt oxides (NiCo2O4) nanowires immobilized on nitrogen-doped Ti3C2Tx (NiCo2O4/N-Ti3C2Tx) are reported via surface chemical-bonded effect as oxygen electrodes, wherein surface-doped pyridinic–N–C and Co–pyridinic–N moieties accounted for efficient ORR owing to increased interlayer spacing and changed surrounding environment around Co metals in NiCo2O4. Importantly, in polyethylene glycol (PVA)-NaCl neutral gel electrolytes, the NiCo2O4/N-Ti3C2Tx-assembled quasi-solid wearable Mg–air batteries delivered high open-circuit potential of 1.5 V, good flexibility under various bent angles, high power density of 9.8 mW cm–2, and stable discharge duration to 12 h without obvious voltage drop at 5 mA cm−2, which can power a blue flexible light-emitting diode (LED) array and red smart rollable wearable device. The present study stimulates studies to investigate Mg–air batteries involving human-body adaptable neutral electrolytes, which will facilitate the application of Mg–air batteries in portable, flexible, and wearable power sources for electronic devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310398-sup-0001-SuppMat.pdf675.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, A. C. Arias, Adv. Mater. 2016, 28, 4373.
- 2S. M. A. Iqbal, I. Mahgoub, E. Du, M. A. Leavitt, W. Asghar, npj Flex. Electron. 2021, 5, 9.
- 3L. Li, Q. Zhang, B. He, R. Pan, Z. Wang, M. Chen, Z. Wang, K. Yin, Y. Yao, L. Wei, L. Sun, Adv. Mater. 2022, 34, 2104327.
- 4A. M. Zamarayeva, A. E. Ostfeld, M. Wang, J. K. Duey, I. Deckman, B. P. Lechêne, G. Davies, D. A. Steingart, A. C. Arias, Sci. Adv. 2017, 3, 1602051.
- 5Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun, Z. Zhou, B. He, P. Man, L. Xie, L. Kang, X. Wang, J. Yang, T. Zhang, P. P. Shum, Q. Li, Y. Yao, L. Wei, Nano Lett. 2019, 19, 4035.
- 6P. Xue, K. Zhu, W. Gong, J. Pu, X. Li, C. Guo, L. Wu, R. Wang, H. Li, J. Sun, G. Hong, Q. Zhang, Y. Yao, Adv. Energy Mater. 2022, 12, 2200308.
- 7a) F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172; b) B. R. Thomas, Linden's Handbook of Batteries, Fourth Edition, McGraw-Hill Education, New York 2011.
- 8Q. Liu, Z. Chang, Z. Li, X. Zhang, Small Methods. 2018, 2, 1700231.
- 9a) L. Li, H. Chen, E. He, L. Wang, T. Ye, J. Lu, Y. Jiao, J. Wang, R. Gao, H. Peng, Y. Zhang, Angew. Chem., Int. Ed. 2021, 60, 15317; b) C. Cheng, S. Li, Y. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, R. Haag, Adv. Mater. 2018, 30, 1802669.
- 10X. Huang, Y. Liu, W. Park, Z. Zhao, J. Li, C. K. Lim, T. H. Wong, C. K. Yiu, Y. Gao, J. Zhou, H. Li, L. Zhao, J. Li, B. Zhang, Y. Huang, R. Shi, D. Li, J. Mo, J. Wang, C. Zhang, Y. Li, Z. Wang, X. Yu, InfoMat. 2023, 5, e12388.
- 11C.-S. Li, Y. Sun, F. Gebert, S.-L. Chou, Adv. Energy Mater. 2017, 7, 1700869.
- 12a) T. Zhang, Z. Tao, J. Chen, Mater. Horiz. 2014, 1, 196; b) Z. Guo, S. Zhao, T. Li, D. Su, S. Guo, G. Wang, Adv. Energy Mater. 2020, 10, 1903591; c) Y.-J. Wang, B. Fang, D. Zhang, A. Li, D. P. Wilkinson, A. Ignaszak, L. Zhang, J. Zhang, Electrochem. Energy Rev. 2018, 1, 1; d) D. Yuan, Y. Dou, Z. Wu, Y. Tian, K.-H. Ye, Z. Lin, S. X. Dou, S. Zhang, Chem. Rev. 2022, 122, 957; e) J. Yu, B.-Q. Li, C.-X. Zhao, Q. Zhang, Energy Environ. Sci. 2020, 13, 3253.
- 13Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399.
- 14a) H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1803329; b) J. Zhang, T. Wang, D. Xue, C. Guan, P. Xi, D. Gao, W. Huang, Energy Storage Mater. 2020, 25, 202; c) M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Chem. - Eur. J. 2018, 24, 13002.
- 15a) V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-G. Lee, T. Yoon, K. S. Kim, ACS Catal. 2017, 7, 7196; b) X. Guo, T. Zheng, G. Ji, N. Hu, C. Xu, Y. Zhang, J. Mater. Chem. A. 2018, 6, 10243.
- 16C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 2016, 26, 3515.
- 17J. Yang, T. Fujigaya, N. Nakashima, Sci. Rep. 2017, 7, 45384.
- 18S. Chen, S.-Z. Qiao, ACS Nano. 2013, 7, 10190.
- 19S. Gupta, S. Zhao, O. Ogoke, Y. Lin, H. Xu, G. Wu, ChemSusChem. 2017, 10, 774.
- 20X. Li, Z. Huang, C. E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, Nat. Rev. Chem. 2022, 6, 389.
- 21a) S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y. Zhang, Z. Lin, R. D. K. Misra, J. Li, P. Zhang, H. Zhang, Nano Energy. 2020, 77, 105080; b) A. D. Handoko, S. N. Steinmann, Z. W. Seh, Nanoscale Horiz. 2019, 4, 809.
- 22H. Lei, S. Tan, L. Ma, Y. Liu, Y. Liang, M. S. Javed, Z. Wang, Z. Zhu, W. Mai, ACS Appl. Mater. Interfaces. 2020, 12, 44639.
- 23T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang, Y. Zhang, Z. Jia, G. Tan, H. Cao, G. Wu, Compos. B Eng. 2020, 180, 107577.
- 24K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science. 2016, 353, aac9439.
- 25X. Gao, X. Du, T. S. Mathis, M. Zhang, X. Wang, J. Shui, Y. Gogotsi, M. Xu, Nat. Commun. 2020, 11, 6160.
- 26C. Yang, Y. Tang, Y. Tian, Y. Luo, M. Faraz Ud Din, X. Yin, W. Que, Adv. Energy Mater. 2018, 8, 1802087.
- 27Y. Yoon, M. Lee, S. K. Kim, G. Bae, W. Song, S. Myung, J. Lim, S. S. Lee, T. Zyung, K.-S. An, Adv. Energy Mater. 2018, 8, 1703173.
- 28W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Adv. Energy Mater. 2018, 8, 1702485.
- 29A. Sarycheva, Y. Gogotsi, Chem. Mater. 2020, 32, 3480.
- 30P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang, H. Luo, M. Liu, Adv. Funct. Mater. 2017, 27, 1702160.
- 31M. Qin, H. Liang, X. Zhao, H. Wu, J. Colloid Interface Sci. 2020, 566, 347.
- 32L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, ACS Sustainable Chem. Eng. 2019, 7, 5462.
- 33M. Boota, M. Pasini, F. Galeotti, W. Porzio, M.-Q. Zhao, J. Halim, Y. Gogotsi, Chem. Mater. 2017, 29, 2731.
- 34G. Li, H. Cai, X. Li, J. Zhang, D. Zhang, Y. Yang, J. Xiong, ACS Appl. Mater. Interfaces. 2019, 11, 37675.
- 35a) C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang, W. Zhang, Z. Sun, Adv. Funct. Mater. 2020, 30, 2000852; b) Y. Zhou, Y. Wang, Y. Wang, X. Li, Anal. Chem. 2020, 92, 16033.
- 36a) D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science. 2016, 351, 361; b) H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, B. Liu, Sci. Adv. 2016, 2, 1501122.
- 37X. Liang, D. Wang, Z. Zhao, T. Li, Y. Gao, C. Hu, Adv. Funct. Mater. 2022, 32, 2203001.
- 38W. Bao, R. Wang, C. Qian, Z. Zhang, R. Wu, Y. Zhang, F. Liu, J. Li, G. Wang, ACS Nano. 2021, 15, 16207.
- 39J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Nano-Micro Lett. 2021, 13, 175.
- 40H. Liu, Y. Liu, S. Mehdi, X. Wu, T. Liu, B. Zhou, P. Zhang, J. Jiang, B. Li, Adv. Sci. 2021, 8, 2101314.
- 41J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2012, 51, 11496.
- 42Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612.
- 43J. Zhang, Y. Sun, J. Zhu, Z. Gao, S. Li, S. Mu, Y. Huang, Adv. Sci. 2018, 5, 1801375.
- 44J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444.
- 45Y. Fu, H.-Y. Yu, C. Jiang, T.-H. Zhang, R. Zhan, X. Li, J.-F. Li, J.-H. Tian, R. Yang, Adv. Funct. Mater. 2018, 28, 1705094.
- 46C. Sun, X. Guo, J. Zhang, G. Han, D. Gao, X. Gao, J. Energy Chem. 2019, 38, 34.
- 47Y. Wang, N. Xu, R. He, L. Peng, D. Cai, J. Qiao, Appl. Catal. B: Environ. 2021, 285, 119811.
- 48Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Adv. Mater. 2018, 30, 1703657.
- 49L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater. 2017, 29, 1606793.
- 50a) E. Pourshaban, A. Banerjee, M. U. Karkhanis, A. Deshpande, C. Ghosh, H. Kim, C. H. Mastrangelo, Adv. Mater. Technol. 2023, 8, 2200518; b) Y. Liu, S. He, B. Huang, Z. Kong, L. Guan, J. Energy Chem. 2022, 70, 511; c) M. Liu, Q. Zhang, X. Zhang, H. Fan, J. Gao, Z. Jing, M. Wang, Z. Wang, E. Wang, Chem. Eng. J. 2023, 472, 145154; d) X. Huang, D. Wang, Z. Yuan, W. Xie, Y. Wu, R. Li, Y. Zhao, D. Luo, L. Cen, B. Chen, H. Wu, H. Xu, X. Sheng, M. Zhang, L. Zhao, L. Yin, Small. 2018, 14, 1800994; e) M. Frei, J. Martin, S. Kindler, G. Cristiano, R. Zengerle, S. Kerzenmacher, J. Power Sources. 2018, 401, 403; f) V. Edupuganti, R. Solanki, J. Power Sources. 2016, 336, 447.
- 51O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'Agnese, M. Heon, M. W. Barsoum, Y. Gogotsi, Nat. Commun. 2013, 4, 1716.
- 52R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem., Int. Ed. 2010, 49, 2565.
- 53G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 54J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 55P. E. Blöchl, Phys. Rev. B. 1994, 50, 17953.