Space-Confined Growth of Ultrathin P-Type GeTe Nanosheets for Broadband Photodetectors
Junyu Qu
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHaodong Cheng
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHuiping Lan
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorBiyuan Zheng
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZiyu Luo
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXin Yang
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXiao Yi
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorGuangcheng Wu
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Shula Chen
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Anlian Pan
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
School of Physics and Electronics, Hunan Normal University, Changsha, Hunan, 410081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunyu Qu
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHaodong Cheng
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHuiping Lan
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorBiyuan Zheng
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZiyu Luo
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXin Yang
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXiao Yi
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorGuangcheng Wu
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Shula Chen
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Anlian Pan
Hunan Institute of Optoelectronic Integration, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
School of Physics and Electronics, Hunan Normal University, Changsha, Hunan, 410081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
As p-type phase-change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two-dimensional (2D) p-type GeTe nanosheets are synthesized via a specially designed space-confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space-confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p-type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature-dependent electrical measurements demonstrate that variable-range hopping and optical-phonon-assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W−1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near-infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p-type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202309391-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha, J. Appenzeller, Z. Chen, W. Zhu, I. Asselberghs, L.-J. Li, U. E. Avci, N. Bhat, T. D. Anthopoulos, R. Singh, Nat. Electron. 2021, 4, 786.
- 2X. Huang, C. Liu, P. Zhou, npj 2D Mater. Appl. 2022, 6, 51.
- 3J. Shang, C. Cong, L. Wu, W. Huang, T. Yu, Small Methods 2018, 2, 1800019.
- 4M. Long, P. Wang, H. Fang, W. Hu, Adv. Funct. Mater. 2018, 29, 1803807.
- 5B. Lu, Z. Zhu, B. Ma, W. Wang, R. Zhu, J. Zhang, Small 2021, 17, e2100946.
- 6T. H. Le, Y. Oh, H. Kim, H. Yoon, Chem. Eur. J. 2020, 26, 6360.
- 7L. Tang, X. Meng, D. Deng, X. Bao, Adv. Mater. 2019, 31, 1901996.
- 8Y. Liu, X. Ge, J. Li, Appl. Mater. Today 2020, 20, 100662.
- 9B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.
- 10A. Pelella, A. Grillo, F. Urban, F. Giubileo, M. Passacantando, E. Pollmann, S. Sleziona, M. Schleberger, A. Di Bartolomeo, Adv. Electron. Mater. 2020, 7, 2000838.
10.1002/aelm.202000838 Google Scholar
- 11T. Li, H. Peng, Acc. Mater. Res. 2021, 2, 842.
- 12C. Hong, Y. Tao, A. Nie, M. Zhang, N. Wang, R. Li, J. Huang, Y. Huang, X. Ren, Y. Cheng, X. Liu, ACS Nano 2020, 14, 16803.
- 13B. Wang, S. P. Zhong, Z. B. Zhang, Z. Q. Zheng, Y. P. Zhang, H. Zhang, Appl. Mater. Today 2019, 15, 115.
- 14Y. Zhong, J. Tang, H. Liu, Z. Chen, L. Lin, D. Ren, B. Liu, R. Ang, ACS Appl. Mater. Interfaces 2020, 12, 49323.
- 15R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan, K. A. Persson, A. Zakutayev, Chem. Rev. 2020, 120, 4007.
- 16K. Ueno, F. Taiga, A. Kobayashi, H. Fujioka, Sci. Rep. 2019, 9, 20242.
- 17A. Janotti, C. G. Van de Walle, Rep. Prog. Phys. 2009, 72, 126501.
- 18G. Zhang, S. Huang, F. Wang, H. Yan, Laser Photonics Rev. 2021, 15, 2000399.
- 19M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez, Nano Lett. 2014, 14, 3347.
- 20C. Liu, J. Guo, L. Yu, Y. Xiang, H. Xiang, J. Li, D. Dai, ACS Photonics 2022, 9, 1764.
- 21Y. Yin, R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, D. Dai, Laser Photonics Rev. 2019, 13, 1900032.
- 22L. Huang, B. Dong, X. Guo, Y. Chang, N. Chen, X. Huang, W. Liao, C. Zhu, H. Wang, C. Lee, K. W. Ang, ACS Nano 2019, 13, 913.
- 23M. R. Lien, N. Wang, J. Wu, A. Soibel, S. D. Gunapala, H. Wang, M. L. Povinelli, Nano Lett. 2022, 22, 8704.
- 24C. K. Liu, Q. Tai, N. Wang, G. Tang, H. L. Loi, F. Yan, Adv. Sci. 2019, 6, 1900751.
- 25T. Zhu, Y. Yang, X. Gong, ACS Appl. Mater. Interfaces 2020, 12, 26776.
- 26B. A. Rosales, M. P. Hanrahan, B. W. Boote, A. J. Rossini, E. A. Smith, J. Vela, ACS Energy Lett. 2017, 2, 906.
- 27Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
- 28C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, InfoMat 2020, 2, 1247.
- 29D. An, X. Zhang, Z. Bi, W. Shan, H. Zhang, S. Xia, M. Qiu, Adv. Funct. Mater. 2021, 31, 2106484.
- 30O. J. Clark, I. Wadgaonkar, F. Freyse, G. Springholz, M. Battiato, J. Sanchez-Barriga, Adv. Mater. 2022, 34, 2200323.
- 31W. D. Liu, D. Z. Wang, Q. Liu, W. Zhou, Z. Shao, Z. G. Chen, Adv. Energy Mater. 2020, 10, 2000367.
- 32M. Samanta, T. Ghosh, R. Arora, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2019, 141, 19505.
- 33J. E. Boschker, R. Wang, R. Calarco, CrystEngComm 2017, 19, 5324.
- 34S. K. Bahl, K. L. Chopra, J. Appl. Phys. 1970, 41, 2196.
- 35S. K. Bahl, K. L. Chopra, J. Vac. Sci. Technol. 1969, 6, 561.
- 36R. Tsu, W. E. Howard, L. Esaki, Phys. Rev. 1968, 172, 779.
- 37A. Edwards, A. Pineda, P. Schultz, M. Martin, A. Thompson, H. Hjalmarson, C. Umrigar, Phys. Rev. B 2006, 73, 045210.
- 38Y. Yao, X. Zhan, C. Ding, F. Wang, Y. Wang, J. Yang, Z. Wang, J. He, Nano Res. 2022, 15, 6736.
- 39E. K. Chua, L. P. Shi, M. H. Li, R. Zhao, T. C. Chong, T. E. Schlesinger, J. A. Bain, Appl. Phys. Lett. 2011, 98, 232104.
10.1063/1.3599057 Google Scholar
- 40W. Li, R. Wu, Q. Li, Q. Tao, M. Z. Saeed, X. Li, S. Wan, R. Song, D. Shen, K. Huang, M. Liu, B. Li, B. Zhao, J. Liu, Y. Liu, B. Li, J. Li, X. Duan, Adv. Funct. Mater. 2022, 32, 2201673.
- 41S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, K. Biswas, Chem. Mater. 2017, 29, 10426.
- 42S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, K. Biswas, Chem. Mater. 2015, 27, 7171.
- 43P. Nukala, R. Agarwal, X. Qian, M. H. Jang, S. Dhara, K. Kumar, A. T. Johnson, J. Li, R. Agarwal, Nano Lett. 2014, 14, 2201.
- 44M. Pinaud, G. Humbert, S. Engelbrecht, L. Merlat, B. M. Fischer, A. Crunteanu, ACS Photonics 2021, 8, 3272.
- 45M. Wang, M. Rais-Zadeh, J. Micromech. Microeng. 2017, 27, 013001.
10.1088/0960-1317/27/1/013001 Google Scholar
- 46P. Kowalczyk, F. Hippert, N. Bernier, C. Mocuta, C. Sabbione, W. Batista-Pessoa, P. Noe, Small 2018, 14, e1704514.
- 47R. Wang, W. Zhang, J. Momand, I. Ronneberger, J. E. Boschker, R. Mazzarello, B. J. Kooi, H. Riechert, M. Wuttig, R. Calarco, NPG Asia Mater 2017, 9, e396.
- 48L. Miao, Y. Lu, Y. Zhang, W. Sun, Z. Hu, Cryst. Growth Des. 2022, 22, 1292.
- 49Y. Zhao, L. Tang, S. Yang, K. Seng Teng, S. Ping Lau, Opt. Lett. 2020, 45, 1108.
- 50D. Fu, X. Zhao, Y. Y. Zhang, L. Li, H. Xu, A. R. Jang, S. I. Yoon, P. Song, S. M. Poh, T. Ren, Z. Ding, W. Fu, T. J. Shin, H. S. Shin, S. T. Pantelides, W. Zhou, K. P. Loh, J. Am. Chem. Soc. 2017, 139, 9392.
- 51A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone, Nat. Mater. 2013, 12, 554.
- 52A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, J. Park, Science 2012, 336, 1143.
- 53M. R. Buck, A. J. Biacchi, E. J. Popczun, R. E. Schaak, Chem. Mater. 2013, 25, 2163.
- 54S. Zhou, L. Gan, D. Wang, H. Li, T. Zhai, Nano Res. 2018, 11, 2909.
- 55C.-C. Chen, C.-J. Kuo, C.-D. Liao, C.-F. Chang, C.-A. Tseng, C.-R. Liu, Y.-T. Chen, Chem. Mater. 2015, 27, 6249.
- 56K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, A. V. Kolobov, M. Ribes, J. Tominaga, J. Phys. Condens. Matter 2006, 18, 965.
- 57X. Sun, B. Yu, G. Ng, M. Meyyappan, J. Phys. Chem. C 2007, 111, 2421.
- 58L. V. Yashina, S. P. Kobeleva, T. B. Shatalova, V. P. Zlomanov, V. I. Shtanov, Solid State Ionics 2001, 141, 513.
- 59J. Li, Y. Zhang, J. Zhang, J. Chu, L. Xie, W. Yu, X. Zhao, C. Chen, Z. Dong, L. Huang, L. Yang, Q. Yu, Z. Ren, J. Wang, Y. Xu, K. Zhang, Adv. Mater. 2022, 34, 2207796.
- 60X. Zhou, X. Hu, S. Zhou, Q. Zhang, H. Li, T. Zhai, Adv. Funct. Mater. 2017, 27, 1703858.
- 61L. Li, X. Fang, T. Zhai, M. Liao, U. K. Gautam, X. Wu, Y. Koide, Y. Bando, D. Golberg, Adv. Mater. 2010, 22, 4151.
- 62C. Y. Khoo, H. Liu, W. A. Sasangka, R. I. Made, N. Tamura, M. Kunz, A. S. Budiman, C. L. Gan, C. V. Thompson, J. Mater. Sci. 2016, 51, 1864.
- 63Y. Chen, R. Wang, X. Shen, T. Xu, Infrared Phys. Technol. 2020, 106, 103280.
- 64X. Fang, P. Wei, L. Wang, X. Wang, B. Chen, Q. He, Q. Yue, J. Zhang, W. Zhao, J. Wang, G. Lu, H. Zhang, W. Huang, X. Huang, H. Li, ACS Appl. Mater. Interfaces 2018, 10, 13011.
- 65H. Wang, S. Zhang, T. Zhang, J. Liu, Z. Zhang, G. Yuan, Y. Liang, J. Tan, Y. Ren, W. Lei, ACS Appl. Nano Mater 2021, 4, 13071.
- 66R. K. Ulaganathan, Y. Y. Lu, C. J. Kuo, S. R. Tamalampudi, R. Sankar, K. M. Boopathi, A. Anand, K. Yadav, R. J. Mathew, C. R. Liu, F. C. Chou, Y. T. Chen, Nanoscale 2016, 8, 2284.
- 67H. Liu, D. Li, C. Ma, X. Zhang, X. Sun, C. Zhu, B. Zheng, Z. Zou, Z. Luo, X. Zhu, X. Wang, A. Pan, Nano Energy 2019, 59, 66.
- 68C. Li, J. Kang, J. Xie, Y. Wang, L. Zhou, H. Hu, X. Li, J. He, B. Wang, H. Zhang, J. Mater. Chem. C. 2020, 8, 16318.
- 69L. Li, W. Wang, P. Gong, X. Zhu, B. Deng, X. Shi, G. Gao, H. Li, T. Zhai, Adv. Mater. 2018, 30, 1706771.
- 70C. S. Jung, D. Kim, S. Cha, Y. Myung, F. Shojaei, H. G. Abbas, J. A. Lee, E. H. Cha, J. Park, H. S. Kang, J. Mater. Chem. A. 2018, 6, 9089.
- 71M. Hussain, S. Aftab, S. H. A. Jaffery, A. Ali, S. Hussain, D. N. Cong, R. Akhtar, Y. Seo, J. Eom, P. Gautam, H. Noh, J. Jung, Sci. Rep. 2020, 10, 9374.
- 72N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas, M. Terrones, 2D Mater. 2014, 1, 011004.
- 73S. Hwan Lee, D. Lee, W. Sik Hwang, E. Hwang, D. Jena, W. Jong Yoo, Appl. Phys. Lett. 2014, 104, 193113.