Hollow Core–Shell Bismuth Based Al-Doped Silica Materials for Powerful Co-Sequestration of Radioactive I2 and CH3I
Zhenjiang Tian
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorYuxun Hao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorTien-Shee Chee
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea
Search for more papers by this authorHe Cai
Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ UK
Search for more papers by this authorLin Zhu
School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010 P. R. China
Search for more papers by this authorTao Duan
School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010 P. R. China
Search for more papers by this authorCorresponding Author
Chengliang Xiao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
E-mail: [email protected]
Search for more papers by this authorZhenjiang Tian
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorYuxun Hao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorTien-Shee Chee
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea
Search for more papers by this authorHe Cai
Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ UK
Search for more papers by this authorLin Zhu
School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010 P. R. China
Search for more papers by this authorTao Duan
School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010 P. R. China
Search for more papers by this authorCorresponding Author
Chengliang Xiao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3I and has not been systematically studied. Herein, a series of hollow mesoporous core–shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g−1, respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3I. Furthermore, the core–shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308451-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Huve, A. Ryzhikov, H. Nouali, V. Lalia, G. Augé, T. J. Daou, RSC Adv. 2018, 8, 29248.
- 2J. Wang, D. Fan, C. Jiang, L. Lu, Nano Today 2021, 36, 101034.
- 3T. Pan, K. Yang, X. Dong, H. Yu, J. Mater. Chem. A 2023, 11, 5460.
- 4C. Liu, J. Lan, Q. Yan, Z. Wang, C. Xu, W. Shi, C. Xiao, Chin. Chem. Lett. 2022, 33, 3561.
- 5X. Yang, D. Xie, W. Wang, S. Li, Z. Tang, S. Dai, Chem. Eng. J. 2023, 454, 140365.
- 6Z. Shen, A. I. Wiechert, S. Choi, A. P. Ladshaw, L. L. Tavlarides, C. Tsouris, S. Yiacoumi, Microporous Mesoporous Mat 2022, 336, 111898.
- 7S. Choi, Y. Nan, L. Tavlarides, AIChE J. 2021, 8, e17182.
10.1002/aic.17182 Google Scholar
- 8S. Chibani, M. Chebbi, S. Lebègue, L. Cantrel, M. Badawi, Phys. Chem. Chem. Phys. 2016, 18, 25574.
- 9T. M. Nenoff, M. A. Rodriguez, N. R. Soelberg, K. W. Chapman, Microporous Mesoporous Mat 2014, 200, 297.
- 10T. Bučko, S. Chibani, J. Paul, L. Cantrel, M. Badawi, Phys. Chem. Chem. Phys. 2017, 19, 27530.
- 11A. Yadav, S. Chong, B. J. Riley, J. S. McCloy, A. Goel, Ind. Eng. Chem. Res. 2023, 62, 3635.
- 12G. Cha, K. Oh, J. S. Lee, J. W. Yoon, M. Lee, U. Lee, D. Hong, Y. K. Hwang, Chem. Eng. J. 2022, 439, 135612.
- 13P. Chen, X. He, M. Pang, X. Dong, S. Zhao, W. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 20429.
- 14A. Abramova, N. Couzon, M. Leloire, P. Nerisson, L. Cantrel, S. Royer, T. Loiseau, C. Volkringer, J. Dhainaut, ACS Appl. Mater. Interfaces 2022, 14, 10669.
- 15Z. Li, Y. Ju, B. Yu, X. Wu, H. Lu, Y. Li, J. Zhou, X. Guo, Z. Zhang, J. Lin, J. Wang, S. Wang, Chemcomm 2020, 56, 6715.
- 16T. Liu, Y. Zhao, M. Song, X. Pang, X. Shi, J. Jia, L. Chi, G. Lu, J. Am. Chem. Soc. 2023, 145, 2544.
- 17Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, W. A. Maksoud, L. Zhao, L. Cavallo, I. Pinnau, Y. Han, Nat. Commun. 2022, 13, 2878.
- 18X. Liu, A. Zhang, R. Ma, B. Wu, T. Wen, Y. Ai, M. Sun, J. Jin, S. Wang, X. Wang, Chin. Chem. Lett. 2022, 33, 3549.
- 19Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, J. Shen, Y. Cai, C. Zhou, I. Pinnau, Y. Han, Angew. Chem., Int. Ed. 2021, 60, 22432.
- 20L. He, L. Chen, X. Dong, S. Zhang, M. Zhang, X. Dai, X. Liu, P. Lin, K. Li, C. Chen, T. Pan, F. Ma, J. Chen, M. Yuan, Y. Zhang, L. Chen, R. Zhou, Y. Han, Z. Chai, S. Wang, Chem 2020, 7, 1.
10.2174/1874842202007010001 Google Scholar
- 21B. Jiang, Y. Qi, X. Li, X. Guo, Z. Jia, J. Zhang, Y. Li, L. Ma, Chin. Chem. Lett. 2022, 33, 3556.
- 22D. Dai, J. Yang, Y. C. Zou, J. R. Wu, L. L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, Y. W. Yang, Angew. Chem., Int. Ed. 2021, 60, 8967.
- 23M. Xu, F. Chen, Q. He, Z. Zhao, P. Liu, L. Zhou, Z. Wang, D. Hua, Sep. Purif. Technol. 2023, 317, 123889.
- 24T. Pan, X. Dong, Y. Han, Nano Res. 2023, 16, 6308.
- 25S. Tang, S. Choi, Y. Nan, L. Tavlarides, AIChE J. 2021, 4, e17137.
10.1002/aic.17137 Google Scholar
- 26Y. Hao, Z. Tian, C. Liu, C. Xiao, Front. Chem. 2023, 11, 1 122 484.
- 27J. Cao, S. Duan, Q. Zhao, G. Chen, Z. Wang, R. Liu, L. Zhu, T. Duan, Langmuir 2023, 39, 12910.
- 28Z. Tian, T. Chee, R. Meng, Y. Hao, X. Zhou, B. Ma, L. Zhu, T. Duan, C. Xiao, Environ. Funct. Mater. 2022, 1, 92.
- 29K. Baskaran, C. Elliott, M. Ali, J. Moon, J. Beland, D. Cohrs, S. Chong, B. J. Riley, D. Chidambaram, K. Carlson, J. Hazard. Mater. 2023, 446, 130644.
- 30J. Li, L. Zhu, C. Yan, Z. Mou, Z. Wang, S. Wei, Y. Su, Y. Chen, Z. Chen, X. Li, T. Duan, J. Lei, Sep. Purif. Technol. 2023, 312, 123374.
- 31Q. Xian, L. Chen, W. Fan, Y. Liu, X. He, H. Dan, L. Zhu, Y. Ding, T. Duan, J. Hazard. Mater. 2022, 424, 127678.
- 32Q. Xian, X. Xiao, J. Yu, Y. Gan, L. Chen, X. He, E. Wang, H. Dan, L. Zhu, Y. Ding, T. Duan, Inorg. Chem. 2022, 61, 19633.
- 33M. Jiang, L. Zhu, Q. Zhao, G. Chen, Z. Wang, J. Zhang, L. Zhang, J. Lei, T. Duan, Chem. Eng. J. 2022, 443, 136477.
- 34E. Wang, L. Chen, X. He, Y. Xiang, S. Jia, Y. Chen, Z. Guo, J. Luo, H. Dan, Y. Ding, T. Duan, Chem. Eng. J. 2023, 465, 143069.
- 35X. Fang, Z. Liu, M. Hsieh, M. Chen, P. Liu, C. Chen, N. Zheng, ACS Nano 2012, 6, 4434.
- 36X. Fang, F. Wen, X. Ding, H. Liu, Z. Chen, Z. Liu, H. Liu, W. Zhu, Z. Liu, Angew. Chem., Int. Ed. 2022, 61, e202203859.
- 37Y. Su, K. Fu, C. Pang, Y. Zheng, C. Song, N. Ji, D. Ma, X. Lu, C. Liu, R. Han, Q. Liu, Environ. Sci. Technol. 2022, 56, 9854.
- 38F. Qin, H. Zhao, G. Li, H. Yang, J. Li, R. Wang, Y. Liu, J. Hu, H. Sun, R. Chen, Nanoscale 2014, 6, 5402.
- 39M. Back, E. Casagrande, E. Trave, D. Cristofori, E. Ambrosi, F. Dallo, M. Roman, J. Ueda, J. Xu, S. Tanabe, A. Benedetti, P. Riello, ACS Appl. Mater. Interfaces 2020, 12, 55195.
- 40T. Chee, S. Lee, W. J. Ng, M. Akmal, H. J. Ryu, ACS Appl. Mater. Interfaces 2023, 15, 40438.
- 41Y. Ding, W. Fan, Q. Xian, H. Dan, L. Zhu, T. Duan, Chem. Eng. J. 2023, 451, 138887.
- 42S. Chong, B. J. Riley, R. M. Asmussen, A. L. Fujii Yamagata, J. Marcial, S. Lee, C. A. Burns, Acs Appl. Polym. Mater. 2022, 4, 9040.
- 43L. Kuboňová, P. Peikertová, K. M. Kutláková, K. Jirátová, G. Słowik, L. Obalová, P. Cool, Mol. Catal. 2017, 437, 57.
- 44S. P. Naik, V. Bui, T. Ryu, J. D. Miller, W. Zmierczak, Appl. Catal. A: Gen. 2010, 381, 183.
- 45Y. Jiao, L. Forster, S. Xu, H. Chen, J. Han, X. Liu, Y. Zhou, J. Liu, J. Zhang, J. Yu, C. D'Agostino, X. Fan, Angew. Chem., Int. Ed. 2020, 132, 19646.
10.1002/ange.202002416 Google Scholar
- 46C. Dai, A. Zhang, M. Liu, X. Guo, C. Song, Adv. Funct. Mater. 2015, 25, 7479.
- 47Q. Li, R. Yu, Z. Li, L. Xia, Microporous Mesoporous Mat 2023, 354, 112536.
- 48Y. Zhang, L. He, T. Pan, J. Xie, F. Wu, X. Dong, X. Wang, L. Chen, S. Gong, W. Liu, L. Kang, J. Chen, L. Chen, L. Chen, Y. Han, S. Wang, Ccs Chemistry 2022, 5, 1540.
10.31635/ccschem.022.202201966 Google Scholar
- 49H. Wan, Q. Xu, J. Wu, C. Lian, H. Liu, B. Zhang, J. He, D. Chen, J. Lu, Angew. Chem., Int. Ed. 2022, 61, e2022085.
- 50B. J. Riley, S. Chong, C. L. Beck, Ind. Eng. Chem. Res. 2021, 60, 17162.
- 51K. Chen, P. Wang, A. Gu, E. Djam Miensah, C. Gong, P. Mao, Y. Jiao, K. Chen, Y. Liu, Y. Yang, Microporous Mesoporous Mat 2022, 339, 111983.
- 52T. Chee, Z. Tian, X. Zhang, L. Lei, C. Xiao, J. Nucl. Mater. 2020, 542, 152526.
- 53Z. Wang, Y. Jiang, A. Baiker, J. Huang, Acc. Chem. Res. 2020, 53, 2648.
- 54C. Chizallet, C. Bouchy, K. Larmier, G. Pirngruber, Chem. Rev. 2023, 123, 6107.
- 55Y. Sun, S. Xu, B. Bai, L. Li, Y. Kang, X. Hu, Z. Liao, C. He, Environ. Sci. Technol. 2022, 56, 5796.
- 56Y. Song, X.-M. Qian, K.-C. Lau, C. Y. Ng, J. Liu, W. Chen, J. Chem. Phys. 2001, 115, 4095.
- 57Z. Wang, Y. Jiang, X. Yi, C. Zhou, A. Rawal, J. Hook, Z. Liu, F. Deng, A. Zheng, M. Hunger, A. Baiker, J. Huang, Sci. Bull. 2019, 64, 516.
- 58J. Yang, J. Shin, J. Park, G. Park, M. Yim, J. Nucl. Mater. 2015, 457, 1.
- 59J. Yang, Y. Cho, J. Shin, M. Yim, J. Nucl. Mater. 2015, 465, 556.