Phase-Modulated Elastic Properties of 2D Magnetic FeTe: Hexagonal and Tetragonal Polymorphs
Yunfei Yu
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorMo Cheng
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorZicheng Tao
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 P. R. China
ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 P. R. China
Search for more papers by this authorWuxiao Han
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorGuoshuai Du
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorYanfeng Guo
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 P. R. China
ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 P. R. China
Search for more papers by this authorJianping Shi
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Yabin Chen
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081 P. R. China
BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing, 400030 P. R. China
E-mail: [email protected]
Search for more papers by this authorYunfei Yu
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorMo Cheng
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorZicheng Tao
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 P. R. China
ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 P. R. China
Search for more papers by this authorWuxiao Han
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorGuoshuai Du
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorYanfeng Guo
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 P. R. China
ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 P. R. China
Search for more papers by this authorJianping Shi
The Institute for Advanced Studies, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Yabin Chen
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081 P. R. China
BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing, 400030 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
2D layered magnets, such as iron chalcogenides, have emerged these years as a new family of unconventional superconductors and provided the key insights to understand the phonon-electron interaction and pairing mechanism. Their mechanical properties are of strategic importance for the potential applications in spintronics and optoelectronics. However, there is still a lack of efficient approach to tune the elastic modulus despite the extensive studies. Herein, the modulated elastic modulus of 2D magnetic FeTe and its thickness-dependence is reported via phase engineering. The grown 2D FeTe by chemical vapor deposition can present various polymorphs, that is tetragonal FeTe (t-FeTe, antiferromagnetic) and hexagonal FeTe (h-FeTe, ferromagnetic). The measured Young's modulus of t-FeTe by nanoindentation method shows an obvious thickness-dependence, from 290.9 ± 9.2 to 113.0 ± 8.7 GPa when the thicknesses increased from 13.2 to 42.5 nm, respectively. In comparison, the elastic modulus of h-FeTe remains unchanged. These results can shed light on the efficient modulation of mechanical properties of 2D magnetic materials and pave the avenues for their practical applications in nanodevices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308357-sup-0001-SuppMat.pdf639.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
- 2Y. Liu, Y. Huang, X. Duan, Nature 2019, 567, 323.
- 3C. Gong, X. Zhang, Science 2019, 363, eaav4450.
- 4H. Zhan, D. Guo, G. Xie, Nanoscale Horiz. 2019, 11, 13181.
- 5Y. Han, J. Zhou, H. Wang, L. Gao, S. Feng, K. Cao, Z. Xu, Y. Lu, Appl. Nanosci. 2021, 11, 1075.
- 6D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. De Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, B. Litt, Nat. Commun. 2014, 5, 5259.
- 7S. J. Kim, H. R. Cho, K. W. Cho, S. Qiao, J. S. Rhim, M. Soh, T. Kim, M. K. Choi, C. Choi, I. Park, N. S. Hwang, T. Hyeon, S. H. Choi, N. Lu, D.-H. Kim, ACS Nano 2015, 9, 2677.
- 8D.-W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, J. C. Williams, Nat. Commun. 2014, 5, 5258.
- 9K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
- 10B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, ACS Nano 2011, 5, 7000.
- 11T. N. Narayanan, B. K. Gupta, S. A. Vithayathil, R. R. Aburto, S. A. Mani, J. Taha-Tijerina, B. Xie, B. A. Kaipparettu, S. V. Torti, P. M. Ajayan, Adv. Mater. 2012, 24, 2992.
- 12H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, S. H. Choi, D.-H. Kim, Nat. Nanotechnol. 2016, 11, 566.
- 13D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 2014, 5, 5678.
- 14X. Xiao, Y. Li, Z. Liu, Nat. Mater. 2016, 15, 697.
- 15W. Zhu, S. Park, M. N. Yogeesh, K. M. Mcnicholas, S. R. Bank, D. Akinwande, Nano Lett. 2016, 16, 2301.
- 16H.-Y. Chang, M. N. Yogeesh, R. Ghosh, A. Rai, A. Sanne, S. Yang, N. Lu, S. K. Banerjee, D. Akinwande, Adv. Mater. 2016, 28, 1818.
- 17H. Bergeron, D. Lebedev, M. C. Hersam, Chem. Rev. 2021, 121, 2713.
- 18C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
- 19J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng, C. Wang, C. Hu, P. Yao, H. Zhang, W. Pang, X. Duan, J. Liu, C. Zhou, D. Zhang, ACS Nano 2015, 9, 11362.
- 20M. Tripathi, F. Lee, A. Michail, D. Anestopoulos, J. G. Mchugh, S. P. Ogilvie, M. J. Large, A. A. Graf, P. J. Lynch, J. Parthenios, K. Papagelis, S. Roy, M. A. S. R. Saadi, M. M. Rahman, N. M. Pugno, A. A. K. King, P. M. Ajayan, A. B. Dalton, ACS Nano 2021, 15, 2520.
- 21G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, F. Wang, Nature 2019, 572, 215.
- 22Y. Sun, J. Pan, Z. Zhang, K. Zhang, J. Liang, W. Wang, Z. Yuan, Y. Hao, B. Wang, J. Wang, Y. Wu, J. Zheng, L. Jiao, S. Zhou, K. Liu, C. Cheng, W. Duan, Y. Xu, Q. Yan, K. Liu, Nano Lett. 2019, 19, 761.
- 23R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, G. Kotliar, Nature 2022, 601, 35.
- 24L. Kang, C. Ye, X. Zhao, X. Zhou, J. Hu, Q. Li, D. Liu, C. M. Das, J. Yang, D. Hu, J. Chen, X. Cao, Y. Zhang, M. Xu, J. Di, D. Tian, P. Song, G. Kutty, Q. Zeng, Q. Fu, Y. Deng, J. Zhou, A. Ariando, F. Miao, G. Hong, Y. Huang, S. J. Pennycook, K.-T. Yong, W. Ji, X. R. Wang, et al., Nat. Commun. 2020, 11, 3729.
- 25M. Cheng, X. Zhao, Y. Zeng, P. Wang, Y. Wang, T. Wang, S. J. Pennycook, J. He, J. Shi, ACS Nano 2021, 15, 19089.
- 26D. Cho, K. M. Bastiaans, D. Chatzopoulos, G. D. Gu, M. P. Allan, Nature 2019, 571, 541.
- 27H. Liu, Y. Xue, Adv. Mater. 2021, 33, 2008456.
- 28O. Kubaschewski, Iron—Binary Phase Diagrams, Springer Science & Business Media, Berlin, Germany 2013.
- 29F. Ma, W. Ji, J. Hu, Z.-Y. Lu, T. Xiang, Phys. Rev. Lett. 2009, 102, 177003.
- 30S. Chen, H. Liu, F. Chen, K. Zhou, Y. Xue, ACS Nano 2020, 14, 11473.
- 31A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. Van Der Zant, N. Agraït, G. Rubio-Bollinger, Adv. Mater. 2012, 24, 772.
- 32S. Chandra, A. Islam, Phys. C 2010, 470, 2072.
- 33J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, C.-Y. Xu, Appl. Phys. Lett. 2016, 108, 013104.
- 34F. Cantos-Prieto, A. Falin, M. Alliati, D. Qian, R. Zhang, T. Tao, M. R. Barnett, E. J. G. Santos, L. H. Li, E. Navarro-Moratalla, Nano Lett. 2021, 21, 3379.
- 35Q. Wei, X. Peng, Appl. Phys. Lett. 2014, 104, 251915.
- 36M. Annamalai, S. Mathew, M. Jamali, D. Zhan, M. Palaniapan, J. Phys. D: Appl. Phys 2013, 46, 145302.
10.1088/0022-3727/46/14/145302 Google Scholar
- 37B. Zhang, L. Zhang, N. Yang, X. Zhao, C. Chen, Y. Cheng, I. Rasheed, L. Ma, J. Zhang, J. Phys. Chem. C 2022, 126, 1094.
- 38B. Zhang, L. Zhang, Z. Wang, Y. Li, Y. Cheng, L. Ma, J. Zhang, J. Mater. Chem. A 2021, 9, 13855.
- 39S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, USA 1959.