Low-temperature Ruby Crystal Growth Via a Supersaturation Process Based on Flux Decomposition
Shunsuke Ayuzawa
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Search for more papers by this authorTetsuya Yamada
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorHiroh Miyagawa
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorShuji Oishi
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Katsuya Teshima
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Center for Space System Innovation, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
E-mail: [email protected]
Search for more papers by this authorShunsuke Ayuzawa
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Search for more papers by this authorTetsuya Yamada
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorHiroh Miyagawa
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorShuji Oishi
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Katsuya Teshima
Nagano Prefecture Nanshin Institute of Technology, 8304-190 Minamiminowa, Nagano, 399-4511 Japan
Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Research Center for Space System Innovation, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
E-mail: [email protected]
Search for more papers by this authorAbstract
Crystal growth methods that do not require high temperatures are highly needed for the facile growth of oxide single crystals with melting points of several thousand degrees Celsius. This paper represents the first report of a method for the low-temperature growth of ruby crystals (chromium-doped Al2O3) at 750 °C, which is one-third of the conventionally required temperature (2050 °C). In solution-based crystal growth, the target crystal is grown at a temperature considerably lower than its melting point. However, conventional crystal growth processes involving solvent evaporation and cooling require high temperatures to completely liquefy the material, with previously reported solution growth temperatures of ≈1100 °C. Supersaturation based on the decomposition of crystal–solvent intermediates eliminates the need to completely liquefy the material, enabling low-temperature crystal growth. The combination of computational and experimental investigations helps determine the optimum conditions for low-temperature crystal growth. The proposed method is a novel green process that breaks the conventional frontiers of crystal growth while ensuring eco-friendliness and low energy consumption. In addition, its scope can potentially be expanded to the synthesis of various crystals and direct growth on substrates with low melting points.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308047-sup-0001-SuppMat.pdf786.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Suntola, J. Antson, United States Patent 4058430. 1975.
- 2J. Czochralski, Z. Phys. Chem. 1918, 92U, 219.
10.1515/zpch-1918-9212 Google Scholar
- 3S. Oishi, K. Teshima, H. Kondo, J. Am. Chem. Soc. 2004, 126, 4768.
- 4G. Wang, X. Chen, Phys. Status Solidi A 2010, 207, 2757.
- 5E. Uwiragiye, T. L. Pham, J. G. Fisher, J. S. Lee, B. W. Lee, J. H. Ko, H. P. Kim, W. Jo, Phys. Status Solidi A 2022, 219, 2100875.
- 6Y. Liu, J. Shi, Adv. Eng. Mater. 2023, 25, 2201917.
- 7Z. Ma, S. Wang, Q. Deng, Z. Hou, X. Zhou, X. Li, F. Cui, H. Si, T. Zhai, H. Xu, Small 2020, 16, 2000596.
- 8M. Kurihara, F. Hayashi, K. Shimizu, H. Wagata, T. Hirano, Y. Nakajima, H. Nishikiori, S. Oishi, K. Domen, K. Teshima, CrystEngComm 2016, 18, 3612.
- 9T. Yamada, N. Zettsu, N. Handa, S. Oishi, K. Teshima, Cryst. Growth Des. 2015, 15, 3922.
- 10S. Suzuki, K. Teshima, T. Wakabayashi, H. Nishikiori, T. Ishizaki, S. Oishi, J. Mater. Chem. 2011, 21, 13847.
- 11Y. Tanaka, S. Okamoto, K. Hashimoto, R. Takayama, T. Harigai, H. Adachi, E. Fujii, Sci. Rep. 2018, 8, 7847.
- 12C. Tian, Sci. Rep. 2020, 10, 7999.
- 13X. Wang, H. Wang, Y. Zhou, Y. Liu, B. Li, X. Zhou, H. Shen, Sci. Rep. 2015, 5, 8129.
- 14J. Fujioka, A. Doi, D. Okuyama, D. Morikawa, T. Arima, K. N. Okada, Y. Kaneko, T. Fukuda, H. Uchiyama, D. Ishikawa, A. Q. R. Baron, K. Kato, M. Takata, Y. Tokura, Sci. Rep. 2015, 5, 13207.
- 15A. Dobrovolsky, A. Merdasa, E. L. Unger, A. Yartsev, I. G. Scheblykin, Nat. Commun. 2017, 8, 34.
- 16Y. Liu, X. Zheng, Y. Fang, Y. Zhou, Z. Ni, X. Xiao, S. Chen, J. Huang, Nat. Commun. 2021, 12, 1686.
- 17M. Hojamberdiev, J. M. Mora-Hernandez, R. Vargas, A. Yamakata, K. Yubuta, E. M. Heppke, L. M. Torres-Martínez, K. Teshima, M. Lerch, ACS Appl. Energy Mater. 2021, 4, 9315.
- 18S. Kambe, T. Yamada, S. Suzuki, K. Teshima, ACS Omega 2022, 7, 28904.
- 19T. Yamada, T. Watanabe, K. Hatsusaka, J. Yuan, M. Koyama, K. Teshima, CrystEngComm 2022, 24, 3179.
- 20S. Ayuzawa, S. Suzuki, M. Hidaka, S. Oishi, K. Teshima, Cryst. Growth Des. 2019, 19, 4095.
- 21S. Ayuzawa, S. Suzuki, M. Hidaka, S. Oishi, K. Teshima, Cryst. Growth Des. 2020, 20, 2019.
- 22S. Ayuzawa, S. Suzuki, M. Hidaka, T. Yamada, S. Oishi, K. Teshima, Cryst. Growth Des. 2020, 20, 4157.
- 23S. Ayuzawa, T. Yamada, N. Katsuta, S. Suzuki, H. Shiiba, S. Oishi, K. Teshima, Cryst. Growth Des. 2020, 20, 6283.
- 24K. Teshima, H. Kondo, T. Suzuki, S. Oishi, J. Ceram. Soc. Japan 2005, 113, 733.
- 25K. Teshima, H. Kondo, S. Oishi, J. Gemmol. 2005, 29, 450.
10.15506/JoG.2005.29.7.450 Google Scholar
- 26K. Teshima, H. Kondo, S. Oishi, Bull. Chem. Soc. Jpn. 2005, 78, 1259.
- 27K. Teshima, A. Miyajima, H. Kondo, K. Mochizuki, T. Suzuki, J. Ceram. Soc. Jpn. 2005, 113, 758.
- 28K. Teshima, A. Takano, T. Suzuki, S. Oishi, Chem. Lett. 2005, 34, 1620.
- 29K. Teshima, K.-I. Matsumoto, H. Kondo, T. Suzuki, S. Oishi, J. Ceram. Soc. Jpn. 2007, 115, 379.
- 30S. Oishi, H. Kondo, T. Kobayashi, S. Watanabe, S. Wakabayashi, Y. Sumiyoshi, Nippon Kagaku Kaishi 1997, 2, 107.
10.1246/nikkashi.1997.107 Google Scholar
- 31K. Watanabe, Y. Sumiyoshi, J. Cryst. Growth 1977, 41, 1.
- 32K. Watanabe, Y. Sumiyoshi, I. Sunagawa, J. Cryst. Growth 1977, 42, 293.
- 33K. Watanabe, A. Iida, Y. Sumiyoshi, J. Cryst. Growth 1981, 54, 381.
- 34T. H. Maiman, Nature 1960, 187, 493.
- 35D. Elwell, H. J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press, London, 1975, p. 3.
- 36G. A. El-Shobaky, F. H. A. Abdalla, A. M. Ghozza, K. A. Khalil, Thermochim. Acta 1996, 275, 235.
- 37G. A. El-Shobaky, G. A. Fagal, N. A. Hassan, Thermochim. Acta 1998, 311, 205.
- 38H. G. El-Shobaky, M. Mokhtar, A. S. Ahmed, Thermochim. Acta 1999, 327, 39.
- 39W. T. A. Harrison, A. K. Cheetham, J. Faber Jr., J. Solid State Chem. 1988, 76, 328.
- 40J. Wu, B. Feng, Z. Gao, Y. Li, S. Wu, Q. Yin, J. Huang, X. Ren, J. Fluor. Chem. 2021, 241, 109676.
- 41E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, USA, 1964, Fig. 04291.
- 42E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, USA, 1964, Fig. 04273.
- 43E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, USA, 1964, Fig. 04281.
- 44L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, London, 1970.
- 45R. E. W. Casselton, W. Hume-Rothery, J. Less Common Met. 1964, 7, 212.
- 46A. Navrotsky, Phys. Chem. Miner. 1997, 24, 222.
- 47L. Vradman, A. Navrotsky, J. Am. Ceram. Soc. 2013, 96, 3202.
- 48C. Marinescu, L. Vradman, S. Tanasescu, A. Navrotsky, J. Solid State Chem. 2015, 230, 411.
- 49L. J. Miara, W. D. Richards, Y. E. Wang, G. Ceder, Chem. Mater. 2015, 27, 4040.
- 50W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, G. Ceder, Chem. Mater. 2016, 28, 266.
- 51A. Belkly, M. Helderman, V. L. Karen, P. Ulkch, Acta Crystallogr. B 2002, 58, 364.
- 52A. Peña, R. Solé, J. Gavaldà, J. Massons, F. Díaz, M. Aguiló, Chem. Mater. 2006, 18, 442.
- 53Y. Boonyongmaneerat, D. ? C. Dunand, Adv. Eng. Mater. 2008, 10, 379.
- 54D. Elwell, H. J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press, London, 1975, p. 476.
- 55W. Ostwald, Zeitschrift für Physikalische Chemie 1900, 34U, 495.
10.1515/zpch-1900-3431 Google Scholar
- 56R. Liang, P. Dosanjh, D. A. Bonn, D. J. Baar, J. F. Carolan, W. N. Hardy, Physica C Superconductivity 1992, 195, 51.
- 57E. Dittmann, D. Petzelt, J. Cryst. Growth 1974, 23, 77.
- 58H. D. Jonker, J. Cryst. Growth 1975, 28, 231.