Boosting Cu─In─Zn─S-based Quantum-Dot Light-Emitting Diodes Enabled by Engineering Cu─NiOx/PEDOT:PSS Bilayered Hole-Injection Layer
Jinxing Zhao
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorFei Chen
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004 China
Search for more papers by this authorCorresponding Author
Haoran Jia
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLijin Wang
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorPing Liu
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorTao Luo
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorLi Guan
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorXu Li
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorZhe Yin
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorCorresponding Author
Aiwei Tang
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJinxing Zhao
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorFei Chen
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004 China
Search for more papers by this authorCorresponding Author
Haoran Jia
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLijin Wang
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorPing Liu
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorTao Luo
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorLi Guan
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorXu Li
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002 China
Search for more papers by this authorZhe Yin
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
Search for more papers by this authorCorresponding Author
Aiwei Tang
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The imbalance of charge injection is considered to be a major factor that limits the device performance of cadmium-free quantum-dot light-emitting diodes (QLEDs). In this work, high-performance cadmium-free Cu─In─Zn─S(CIZS)-based QLEDs are designed and fabricated through tailoring interfacial energy level alignment and improving the balance of charge injection. This is achieved by introducing a bilayered hole-injection layer (HIL) of Cu-doped NiOx (Cu─NiOx)/Poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS). High-quality Cu─NiOx film is prepared through a novel and straightforward sol–gel procedure. Multiple experimental characterizations and theoretical calculations show that the incorporation of Cu2+ ions can regulate the energy level structure of NiOx and enhance the hole mobility. The state-of-art CIZS-based QLEDs with Cu─NiOx/PEDOT:PSS bilayered HIL exhibit the maximum external quantum efficiency of 6.04% and half-life time of 48 min, which is 1.3 times and four times of the device with only PEDOT:PSS HIL. The work provides a new pathway for developing high-performance cadmium-free QLEDs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307115-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Deng, F. Peng, Y. Lu, X. Zhu, W. Jin, J. Qiu, J. Dong, Y. Hao, D. Di, Y. Gao, T. Sun, M. Zhang, F. Liu, L. Wang, L. Ying, F. Huang, Y. Jin, Nat. Photonics 2022, 16, 505.
- 2H. Jung, Y.-S. Park, N. Ahn, J. Lim, I. Fedin, C. Livache, V. I. Klimov, Nat. Commun. 2022, 13, 3734.
- 3Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu, J.-C. Lai, S. Niu, C. Xu, C.-C. Shih, C. Wang, H. Yan, L. Galuska, N. Prine, H.-C. Wu, D. Zhong, G. Chen, N. Matsuhisa, Y. Zheng, Z. Yu, Y. Wang, R. Dauskardt, X. Gu, J. B.-H. Tok, Z. Bao, Nature 2022, 603, 624.
- 4J. Lu, Z. Wei, Z. H. Wei, J. Semicond. 2020, 41, 051203.
- 5X. Li, Q. Lin, J. Song, H. Shen, H. Zhang, L. S. Li, X. Li, Z. Du, Adv. Opt. Mater. 2020, 8, 1901145.
- 6X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.
- 7L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, X. Liu, ACS Appl. Mater. Interfaces 2017, 9, 38755.
- 8V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354.
- 9Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, Y. Cao, ACS Nano 2018, 12, 1564.
- 10W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, S. Lee, Adv. Mater. 2009, 21, 1690.
- 11H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. S. Li, Z. Zhang, Nat. Photonics 2019, 13, 192.
- 12X. Dai, Y. Deng, X. Peng, Y. Jin, Adv. Mater. 2017, 29, 1607022.
- 13P. Yu, S. Cao, Y. Shan, Y. Bi, Y. Hu, R. Zeng, B. Zou, Y. Wang, J. Zhao, Light Sci Appl 2022, 11, 162.
- 14T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, E. Jang, Nature 2020, 586, 385.
- 15P. Lv, Z. Liu, J. Zhao, Z. Xiong, L. Wang, X. Li, Z. Qian, A. Tang, Photonics Res. 2022, 10, 2622.
- 16B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, B. Zou, Adv. Funct. Mater. 2012, 22, 2081.
- 17Z. Tan, Y. Zhang, C. Xie, H. Su, J. Liu, C. Zhang, N. Dellas, S. E. Mohney, Y. Wang, J. Wang, J. Xu, Adv. Mater. 2011, 23, 3553.
- 18H. Zhong, Z. Wang, E. Bovero, Z. Lu, F. C. J. M. Van Veggel, G. D. Scholes, J. Phys. Chem. C 2011, 115, 12396.
- 19W. Zhang, Q. Lou, W. Ji, J. Zhao, X. Zhong, Chem. Mater. 2014, 26, 1204.
- 20J.-H. Kim, C.-Y. Han, K.-H. Lee, K.-S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, H. Yang, Chem. Mater. 2015, 27, 197.
- 21Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, H. Zhong, Chem. Mater. 2016, 28, 1085.
- 22J.-H. Kim, H. Yang, Chem. Mater. 2016, 28, 6329.
- 23Q. Yuan, X. Guan, X. Xue, D. Han, H. Zhong, H. Zhang, H. Zhang, W. Ji, Phys Status Solidi Rapid Res Lett 2019, 13, 1800575.
- 24Z. Wang, X. Zhang, W. Xin, D. Yao, Y. Liu, L. Zhang, W. Liu, W. Zhang, W. Zheng, B. Yang, H. Zhang, Chem. Mater. 2018, 30, 8939.
- 25T. Wang, X. Guan, H. Zhang, W. Ji, ACS Appl. Mater. Interfaces 2019, 11, 36925.
- 26Z. Guan, A. Tang, P. Lv, Z. Liu, X. Li, Z. Tan, T. Hayat, A. Alsaedi, C. Yang, F. Teng, Adv. Opt. Mater. 2018, 6, 1701389.
- 27S.-Y. Yoon, J.-H. Kim, K.-H. Kim, C.-Y. Han, J.-H. Jo, D.-Y. Jo, S. Hong, J. Y. Hwang, Y. R. Do, H. Yang, Nano Energy 2019, 63, 103869.
- 28F. Chen, Z. Liu, Z. Guan, Z. Liu, X. Li, Z. Deng, F. Teng, A. Tang, ACS Photonics 2018, 5, 3704.
- 29Y. Shen, K.-C. Shen, Y.-Q. Li, M. Guo, J. Wang, Y. Ye, F.-M. Xie, H. Ren, X. Gao, F. Song, J.-X. Tang, Adv. Funct. Mater. 2021, 31, 2006736.
- 30Y. Shen, M.-N. Li, Y. Li, F.-M. Xie, H.-Y. Wu, G.-H. Zhang, L. Chen, S.-T. Lee, J.-X. Tang, ACS Nano 2020, 14, 6107.
- 31H. Wang, Y. Xu, J. Wu, L. Chen, Q. Yang, B. Zhang, Z. Xie, J. Phys. Chem. Lett. 2020, 11, 1411.
- 32L. Liu, R. Dong, H. Ge, J. Piao, Y. Wang, S. Li, W. Shen, K. Cao, S. Chen, ACS Appl. Mater. Interfaces 2022, 14, 28133.
- 33M. D. Ho, D. Kim, N. Kim, S. M. Cho, H. Chae, ACS Appl. Mater. Interfaces 2013, 5, 12369.
- 34H. Shen, Q. Lin, W. Cao, C. Yang, N. T. Shewmon, H. Wang, J. Niu, L. S. Li, J. Xue, Nanoscale 2017, 9, 13583.
- 35W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. Mcdaniel, I. Robel, C. Lee, J. M. Pietryga, V. I. Klimov, Nat. Commun. 2013, 4, 2661.
- 36D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian, M. Rao, D. Huo, D. Lan, B. Zhao, D. Di, Nat. Commun. 2021, 12, 4295.
- 37Y. Hassan, J. H. Park, M. L. Crawford, A. Sadhanala, J. Lee, J. C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S. H. Park, M. H. Song, F. De Angelis, C. Y. Wong, R. H. Friend, B. R. Lee, H. J. Snaith, Nature 2021, 591, 72.
- 38P.-H. Lee, T.-T. Wu, C.-F. Li, D. Glowienka, Y.-H. Sun, Y.-T. Lin, H.-W. Yen, C.-G. Huang, Y. Galagan, Y.-C. Huang, W.-F. Su, Chem. Eng. J. 2021, 412, 128746.
- 39F. Cheng, F. Cao, B. Chen, X. Dai, Z. Tang, Y. Sun, J. Yin, J. Li, N. Zheng, B. Wu, Adv. Sci. 2022, 9, 2201573.
- 40W. Chen, Y. Zhou, G. Chen, Y. Wu, B. Tu, F.-Z. Liu, L. Huang, A. M. C. Ng, A. B. Djurisic, Z. He, Adv. Energy Mater. 2019, 9, 1803872.
- 41J. Li, Q. Guo, H. Jin, K. Wang, D. Xu, G. Xu, X. Xu, RSC Adv. 2017, 7, 27464.
- 42L. Zhao, Z. Zhang, X. Luo, Z. Liu, Y. Zhang, Thin Solid Films 2021, 730, 138722.
- 43J. S. Shin, M. Kim, J. H. Ma, J. H. Jeong, H. W. Hwang, J. W. Kim, S. J. Kang, J. Mater. Chem. C 2022, 10, 5590.
- 44N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, 358, 768.
- 45F. Wang, Z. Wang, X. Zhu, Y. Bai, Y. Yang, S. Hu, Y. Liu, B. You, J. Wang, Y. Li, Z. Tan, Small 2021, 17, 2007363.
- 46K. Lin, C. Yan, R. P. Sabatini, W. Feng, J. Lu, K. Liu, D. Ma, Y. Shen, Y. Zhao, M. Li, C. Tian, L. Xie, E. H. Sargent, Z. Wei, Adv. Funct. Mater. 2022, 32, 2200350.
- 47N. Liu, X. Zhao, M. Xia, G. Niu, Q. Guo, L. Gao, J. Tang, J Semicond. 2020, 41, 052204.
- 48J. G. Aiken, A. G. Jordan, J. Phys. Chem. Solids 1968, 29, 2153.
- 49W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, W. Chen, Sol. Energy Mater. Sol. Cells 2012, 98, 212.
- 50S. Rhee, D. Hahm, H.-J. Seok, J. H. Chang, D. Jung, M. Park, E. Hwang, D. C. Lee, Y.-S. Park, H.-K. Kim, W. K. Bae, ACS Nano 2021, 15, 20332.
- 51F. Cao, H. Wang, P. Shen, X. Li, Y. Zheng, Y. Shang, J. Zhang, Z. Ning, X. Yang, Adv. Funct. Mater. 2017, 27, 1704278.
- 52P. Shi, R. Chen, L. Hua, L. Li, R. Chen, Y. Gong, C. Yu, J. Zhou, B. Liu, G. Sun, W. Huang, Adv. Mater. 2017, 29, 1703455.
- 53J. Zhang, P. Yu, G. Zeng, F. Bao, Y. Yuan, H. Huang, J. Mater. Chem. A 2021, 9, 9685.
- 54H. Du, L. Ma, X. Wang, Y. Li, M. Xu, X. Liang, D. Chen, Y. Jin, Chemistry 2021, 27, 11298.
- 55E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn, N. R. Armstrong, Chem. Mater. 2011, 23, 4988.
- 56H. Zhang, C. Zhao, J. Yao, W. C. H. Choy, Angew. Chem., Int. Ed. 2023, 62, 202219307.
- 57Y. Yu, Y. Liang, J. Yong, T. Li, M. S. Hossain, Y. Liu, Y. Hu, K. Ganesan, E. Skafidas, Adv. Funct. Mater. 2021, 32, 2106387.
- 58Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. Tan, Sustain. Energy Fuels 2020, 4, 4415.
- 59F. Jiang, W. C. H. Choy, X. Li, D. Zhang, J. Cheng, Adv. Mater. 2015, 27, 2930.
- 60X. Cui, J. Jin, J. Zou, Q. Tang, Y. Ai, X. Zhang, Z. Wang, Y. Zhou, Z. Zhu, G. Tang, Q. Cao, S. Liu, X. Liu, Q. Tai, Adv. Funct. Mater. 2022, 32, 2203049.
- 61P. Wang, L. Qin, B. Zhou, M. Liu, S. Geng, M. Wang, Z. Lei, Y. Wen, R. Chen, Appl. Phys. Lett. 2022, 120, 033502.
- 62B. Zhao, H. Ma, H. Jia, M. Zheng, K. Xu, R. Yu, S. Qu, Z. Tan, Angew. Chem., Int. Ed. 2023, 135, 202301651.
10.1002/ange.202301651 Google Scholar
- 63Z. Liu, Z. Guan, X. Li, A. Tang, F. Teng, Adv. Opt. Mater. 2020, 8, 1901555.
- 64A. C. Berends, F. T. Rabouw, F. C. M. Spoor, E. Bladt, F. C. Grozema, A. J. Houtepen, L. D. A. Siebbeles, C. De Mello Donegá, J. Phys. Chem. Lett. 2016, 7, 3503.