Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting
Shukuan Shi
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorPengfei Lv
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCristian Valenzuela
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorBinxuan Li
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorYuan Liu
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Ling Wang
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350 P. R. China
E-mail: [email protected] (L.W.); [email protected] (W.F.)
Search for more papers by this authorCorresponding Author
Wei Feng
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350 P. R. China
E-mail: [email protected] (L.W.); [email protected] (W.F.)
Search for more papers by this authorShukuan Shi
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorPengfei Lv
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCristian Valenzuela
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorBinxuan Li
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorYuan Liu
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Ling Wang
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350 P. R. China
E-mail: [email protected] (L.W.); [email protected] (W.F.)
Search for more papers by this authorCorresponding Author
Wei Feng
School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350 P. R. China
E-mail: [email protected] (L.W.); [email protected] (W.F.)
Search for more papers by this authorAbstract
Radiative cooling materials that can dynamically control solar transmittance and emit thermal radiation into cold outer space are critical for smart thermal management and sustainable energy-efficient buildings. This work reports the judicious design and scalable fabrication of biosynthetic bacterial cellulose (BC)-based radiative cooling (Bio-RC) materials with switchable solar transmittance, which are developed by entangling silica microspheres with continuously secreted cellulose nanofibers during in situ cultivation. Theresulting film shows a high solar reflection (95.3%) that can be facilely switched between an opaque state and a transparent state upon wetting. Interestingly, the Bio-RC film exhibits a high mid-infrared emissivity (93.4%) and an average sub-ambient temperature drop of ≈3.7 °C at noon. When integrating with a commercially available semi-transparent solar cell, the switchable solar transmittance of Bio-RC film enables an enhancement of solar power conversion efficiency (opaque state: 0.92%, transparent state: 0.57%, bare solar cell: 0.33%). As a proof-of-concept illustration, an energy-efficient model house with its roof built with Bio-RC-integrated semi-transparent solar cell is demonstrated. This research can shine new light on the design and emerging applications of advanced radiative cooling materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202301957-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Guterres, Carbon neutrality by 2050: The world's most urgent mission.United Nations, 2020.
- 2a) C. Camarasa, É. Mata, J. P. J. Navarro, J. Reyna, P. Bezerra, G. B. Angelkorte, W. Feng, F. Filippidou, S. Forthuber, C. Harris, N. H. Sandberg, S. Ignatiadou, L. Kranzl, J. Langevin, X. Liu, A. Müller, R. Soria, D. Villamar, G. P. Dias, J. Wanemark, K. Yaramenka, Nat. Commun. 2022, 13, 3077; b) K. T. Gillingham, P. Huang, C. Buehler, J. Peccia, D. R. Gentner, Sci. Adv. 2021, 7, eabg0947; c) Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, Y. Long, Adv. Energy Mater. 2019, 9, 1902066.
- 3a) P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. C. Peng, J. Xie, S. Fan, Y. Cui, Science 2016, 353, 1019; b) L. Wang, H. K. Bisoyi, Z. Zheng, K. G. Gutierrez-Cuevas, G. Singh, S. Kumar, T. J. Bunning, Q. Li, Mater. Today. 2017, 20, 230; c) M. Yang, Y. Xu, X. Zhang, H. K. Bisoyi, P. Xue, Y. Yang, X. Yang, C. Valenzuela, Y. H. Chen, L. Wang, W. Feng, Q. Li, Adv. Funct. Mater. 2022, 32, 2201884.
- 4a) N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, R. Wehner, Science 2015, 349, 298; b) H. Zhou, J. Xu, X. Liu, H. Zhang, D. Wang, Z. Chen, D. Zhang, T. Fan, Adv. Funct. Mater. 2018, 28, 1705309; c) H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, T. Fan, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 14657.
- 5a) A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature 2014, 515, 540; b) X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, T. Fan, Adv. Funct. Mater. 2020, 30, 1907562; c) D. Li, X. Liu, W. Li, Z. H. Lin, B. Zhu, Z. Li, J. Li, B. Li, S. Fan, J. Xie, J. Zhu, Nat. Nanotechnol. 2021, 16, 153; d) S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Nano Lett. 2022, 22, 4925; e) S. Fan, W. Li, Nat. Photonics 2022, 16, 182.
- 6a) X. Yin, R. Yang, G. Tan, S. Fan, Science 2020, 370, 786; b) Y. Peng, Y. Cui, Joule 2020, 4, 724; c) Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Adv. Mater. Technol. 2020, 5, 1901007; d) Y. Peng, L. Fan, W. Jin, Y. Ye, Z. Huang, S. Zhai, X. Luo, Y. Ma, J. Tang, J. Zhou, L. Greenburg, A. Majumdar, S. Fan, Y. Cui, Nat. Sustainability 2022, 5, 339.
- 7a) Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science 2017, 355, 1062; b) J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Science 2018, 362, 315; c) T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, L. Hu, Science 2019, 364, 760; d) Y. Chen, B. Dang, J. Fu, C. W, C. Li, Q. Sun, H. Li, Nano Lett. 2020, 21, 397.
- 8a) L. Cai, A. Y. Song, P. Wu, P. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, S. Fan, Y. Cui, Nat. Commun. 2017, 8, 496; b) P. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, Y. Cui, Sci. Adv. 2017, 3, e1700895; c) Y. Peng, J. Chen, A. Y. Song, P. B. Catrysse, P. Hsu, L. Cai, B. Liu, Y. Zhu, G. Zhou, D. S. Wu, H. R. Lee, S. Fan, Y. Cui, Nat. Sustain. 2018, 1, 105; d) Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C. Tsai, W. Huang, S. Shrestha, N. Yu, R. P. S. Han, A. Cao, Y. Yang, Sci. Adv. 2020, 6, eaaz5413.
- 9a) Y. An, Y. Fu, J. Dai, X. Yin, D. Lei, Cell Rep. Phys. Sci. 2022, 3, 101098; b) J. Wang, G. Tan, R. Yang, D. Zhao, Cell Rep. Phys. Sci. 2022, 3, 101198.
- 10a) Z. Wang, S. K. Kim, R. Hu, Matter. 2022, 5, 780; b) Q. Zhang, Y. Wang, Y. Lv, S. Yu, R. Ma, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, 2207353119; c) J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng, Q. Li, Adv. Mater. 2021, 33, 2004754; d) X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, M. Ouyang, Y. Wang, Science 2019, 363, 6190623; e) M. S. Ergoktas, G. Bakan, E. Kovalska, L. W. L. Fevre, R. P. Fields, P. Steiner, X. Yu, O. Salihoglu, S. Balci, V. Fal'ko, K. S. Novoselov, R. A. W. Dryfe, C. Kocabas, Nat. Photonics 2021, 15, 493.
- 11a) Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li, R. Ma, Y. Chen, Nat. Commun. 2022, 13, 4874; b) J. Chai, J. Fan, Adv. Energy Mater. 2022, 13, 2202932; c) H. Khandelwal, A. P. H. J. Schenning, M. G. Debije, Adv. Energy Mater. 2017, 7, 1602209. d) K. C. S. Ly, X. Liu, X. Song, C. Xiao, P. Wang, H. Zhou, T. Fan, Adv. Funct. Mater. 2022, 32, 2203789.
- 12a) S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan, Y. Long, Science 2021, 374, 1501; b) K. Tang, K. Dong, J. Li, M. P. Gordon, F. G. Reichertz, H. Kim, Y. Rho, Q. J. Wang, C. Lin, C. P. Grigoropoulos, A. Javey, J. J. Urban, J. Yao, R. Levinson, J. Wu, Science 2021, 374, 1504; c) C. Lin, J. Hur, C. Y. H. Chao, G. Liu, S. Yao, W. Li, B. Huang, Sci. Adv. 2022, 8, eabn7359; d) J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che, N. Yu, Y. Yang, Joule 2019, 3, 3088.
- 13a) T. Li, C. J. Chen, A. H. Brozena, J. Y. Zhu, L. Xu, C. Driemeier, J. Dai, O. J. Rojas, A. Isogai, L. Wågberg, L. Hu, Nature 2021, 590, 47;
b) S. Cao, P. Rathi, X. Wu, D. Ghim, Y. Jun, S. Singamaneni, Adv. Mater. 2021, 33, 2000619;
10.1002/adma.202000619 Google Scholarc) Z. Niu, W. Cheng, M. Cao, D. Wang, Q. Wang, J. Han, Y. Long, G. Han, Nano Energy 2021, 87, 106175;
- 14a) C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen, C. Gerhard, E. Nimerovsky, Y. Fu, K. Zhang, Nano Lett. 2022, 22, 4106; b) W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T. G. Parton, X. Shan, R. M. Parker, M. F. L. D. Volder, T. Deng, S. Vignolini, T. Li, Adv. Sci. 2022, 9, 2202061; c) B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, X. Meng, Nano Energy. 2021, 81, 105600; d) J. Jaramillo-Fernandez, H. Yang, L. Schertel, G. L. Whitworth, P. D. Garcia, S. Vignolini, C. M. Sotomayor-Torres, Adv. Sci. 2022, 9, 2104758; e) J. Fei, D. Han, J. Ge, X. Wang, S. W. Koh, S. Gao, Z. Sun, M. P. Wan, Bi. F. Ng, L. Cai, H. Li, Adv. Funct. Mater. 2022, 32, 2203582.
- 15S. Cao, P. Rathi, X. Wu, D. Ghim, Y. S. Jun, S. Singamaneni, Adv. Mater. 2020, 33, 2000922
- 16a) P. Lv, X. Liu, L. Wang, W. Feng, Adv. Funct. Mater. 2021, 31, 2104991; b) P. Lv, X. Yang, H. K. Bisoyi, H. Zeng, X. Zhang, Y. Chen, P. Xue, S. Shi, A. Priimagi, L. Wang, W. Feng, Q. Li, Mater. Horiz. 2021, 8, 2475; c) K. Heise, E. Kontturi, Y. Allahverdiyeva, T. Tammelin, M. B. Linder, Nonappa, O. Ikkala, Adv. Mater. 2021, 33, 2004349; d) B. Zhao, X. Yue, Q. Tian, F. Qiu, Y. Li, T. Zhang, Cellulose 2022, 29, 7775.
- 17a) D. Andriani, A. A. Yuthi, M. Karina, Cellulose 2020, 27, 6747; b) U. Römling, M. Y. Galperin, Trends Microbiol. 2015, 23, 545; c) Z. Wu, S. Chen, J. Li, B. Wang, M. Jin, Q. Liang, D. Zhang, Z. Han, L. Deng, X. Qu, H. Wang, Adv. Funct. Mater. 2023, 33, 2214327.
- 18a) Q. Guan, Z. Ling, Z. Han, T. Luo, H. Yang, K. Yang, C. Yin, S. Yu, Adv. Funct. Mater. 2021, 31, 2105070; b) Q. Jiang, H. G. Derami, D. Ghim, S. Cao, Y. S. Jun, S. Singamaneni, J. Mater. Chem. A. 2017, 5, 18397. c) Y. H. Cheung, K. Ma, M. C. Wasson, X. Wang, K. B. Idrees, T. Islamoglu, J. Mahle, G. W. Peterson, J. H. Xin, O. K. Farha, Angew. Chem., Int. Ed. 2022, 61, 202202207.
- 19Y. Cui, H. Gong, Y. Wang, D. Li, H. Bai, Adv. Mater. 2018, 30, 1706807.
- 20H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu, Y. Wang, T. Meng, Y. Zhou, H. Hou, C. Xue, Y. Zhao, Z. Wang, ACS Nano 2021, 15, 10076.
- 21a) H. Meddeb, M. Götz-Köhler, N. Neugebohrn, U. Banik, N. Osterthun, O. Sergeev, D. Berends, C. Lattyak, K. Gehrke, M. Vehse, Adv. Energy Mater. 2022, 12, 2200713; b) J. Lin, M. Lai, L. Dou, C. S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S. A. Hawks, C. Xie, F. Cui, A. P. Alivisatos, D. T. Limmer, P. Yang, Nat. Mater. 2018, 17, 261; c) L. M. Wheeler, D. T. Moore, R. Ihly, N. J. Stanton, E. M. Miller, R. C. Tenent, J. L. Blackburn, N. R. Neale, Nat. Commun. 2017, 8, 1722.
- 22a) J. C. Yu, B. Li, C. J. Dunn, J. Yan, B. T. Diroll, A. S. R. Chesman, J. J. Jasieniak, Adv. Sci. 2022, 9, 2201487; b) Y. Zhang, J. Zheng, Z. Jiang, X. He, J. Kim, L. Xu, M. Qin, X. Lu, A. K. K. Kyaw, W. C. H. Choy, Adv. Energy Mater. 2023, 13, 2203266; c) B. Yu, F. Tang, Y. Yang, J. Huang, S. Wu, F. Lu, W. Duan, A. Lambertz, K. Ding, Y. Mai, Adv. Mater. 2023, 35, 2202447
- 23W. Gao, Y. Chen, Small 2023, 19, 2206145.
- 24S. Zhang, G. Li, H. Cong, B. Yu, X. Gai, Integr. Ferroelectr. 2017, 178, 52.