High Performance Inverted RbCsFAPbI3 Perovskite Solar Cells Based on Interface Engineering and Defects Passivation
Tahir Imran
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorHasan Raza
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorLiaquat Aziz
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Rui Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSanwan Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorZhaoyi Jiang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorYou Gao
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorJianan Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorMuhammad Younis
Center of Joining and Electronic Packing, State Key Laboratory of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorSajid Rauf
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518000 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Optics Valley Laboratory Hubei, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Optics Valley Laboratory Hubei, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTahir Imran
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorHasan Raza
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorLiaquat Aziz
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Rui Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSanwan Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorZhaoyi Jiang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorYou Gao
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorJianan Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Search for more papers by this authorMuhammad Younis
Center of Joining and Electronic Packing, State Key Laboratory of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorSajid Rauf
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518000 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Optics Valley Laboratory Hubei, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074 China
Optics Valley Laboratory Hubei, Wuhan, 430074 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lead halide-based perovskites solar cells (PSCs) are intriguing candidates for photovoltaic technology due to their high efficiency, low cost, and simple fabrication processes. Currently, PSCs with efficiencies of >25% are mainly based on methylammonium (MA)-free and bromide (Br) free, formamide lead iodide (FAPbI3)-based perovskites, because MA is thermally unstable due to its volatile nature and Br incorporation will induce blue shift in the absorption spectrum. Therefore, MA-free, Br-free formamidine-based perovskites are drawing huge research attention in recent years. The hole transporting layer (HTL) is crucial in fabricating highly efficient and stable inverted p-i-n structured PSCs by enhancing charge extraction, lowering interfacial recombination, and altering band alignment, etc. Here, this work employs a NiOx/PTAA bi-layer HTL combined with GuHCl (guanidinium hydrochloride) additive engineering and PEAI (phenylethylammonium iodide) passivation strategy to optimize the charge carrier dynamics and tune defects chemistry in the MA-free, Br-free RbCsFAPbI3-based perovskite absorber, which boosts the device efficiency up to 22.78%. Additionally, the device retains 95% of its initial performance under continuous 1 sun equivalent LED light illumination at 45 °C for up to 500 h.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202207950-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel, D. S. Kim, Science 2022, 375, 302.
- 3J.-W. Lee, H.-S. Kim, N.-G. Park, Acc. Chem. Res. 2016, 49, 311.
- 4Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 5M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179.
- 6C. Wang, W. Shao, J. Liang, C. Chen, X. Hu, H. Cui, C. Liu, G. Fang, C. Tao, Small 2022, 18, 2204081.
- 7T. Imran, S. Rauf, H. Raza, L. Aziz, R. Chen, S. Liu, J. Wang, M. A. Ahmad, S. Zhang, Y. Zhang, Z. Liu, W. Chen, Adv. Energy Mater. 2022, 12, 2200305.
- 8H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. I. Seok, Science 2019, 366, 749.
- 9J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, Adv. Mater. 2014, 26, 4991.
- 10J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764.
- 11C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 12A. Binek, F. C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. 2015, 6, 1249.
- 13S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science 2018, 362, 449.
- 14M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, M. Z. Shaik, J.-P. Correa-Baena, R. Tress Wolfgang, A. Abate, A. Hagfeldt, M. Grätzel, Science 2016, 354, 206.
- 15M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989.
- 16N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
- 17D. Trots, S. Myagkota, J. Phys. Chem. Solids 2008, 69, 2520.
- 18Y.-K. Jung, J.-H. Lee, A. Walsh, A. Soon, Chem. Mater. 2017, 29, 3181.
- 19D. Prochowicz, M. M. Tavakoli, A. Kalam, R. D. Chavan, S. Trivedi, M. Kumar, P. Yadav, J. Mater. Chem. A 2019, 7, 8218.
- 20M. C. Tang, S. Zhang, T. J. Magnanelli, N. V. Nguyen, E. J. Heilweil, T. D. Anthopoulos, C. A. Hacker, Mater. Adv. 2021, 2, 1253.
- 21S. Li, Z. Liu, Z. Qiao, X. Wang, L. Cheng, Y. Zhai, Q. Xu, Z. Li, K. Meng, G. Chen, Adv. Funct. Mater. 2020, 30, 2005846.
- 22Y. Hu, E. M. Hutter, P. Rieder, I. Grill, J. Hanisch, M. F. Aygüler, A. G. Hufnagel, M. Handloser, T. Bein, A. Hartschuh, K. Tvingstedt, V. Dyakonov, A. Baumann, T. J. Savenije, M. L. Petrus, P. Docampo, Adv. Energy Mater. 2018, 8, 1703057.
- 23E. Zheng, Z. Niu, G. A. Tosado, H. Dong, Y. Albrikan, Q. Yu, J. Phys. Chem. C 2020, 124, 18805.
- 24H. Li, J. Zhou, L. Tan, M. Li, C. Jiang, S. Wang, X. Zhao, Y. Liu, Y. Zhang, Y. Ye, W. Tress, C. Yi, Sci. Adv. 2022, 8, eabo7422.
- 25N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E.-P. Yao, Y. Liu, A. Schiffer, Y. Yang, Nano Lett. 2016, 16, 1009.
- 26M. H. Alotaibi, Y. A. Alzahrani, N. Arora, A. Alyamani, A. Albadri, H. Albrithen, I. H. Al-Lehyani, S. M. Alenzi, A. Z. Alanzi, F. S. J. S. R. Alghamdi, Sol. RRL 2020, 4, 1900234.
- 27M. Yu, L. Chen, G. Li, C. Xu, C. Luo, M. Wang, G. Wang, Y. Yao, L. Liao, S. Zhang, RSC Adv. 2020, 10, 19513.
- 28G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, J. Phys. Chem. C 2015, 119, 4694.
- 29Y. Du, C. Xin, W. Huang, B. Shi, Y. Ding, C. Wei, Y. Zhao, Y. Li, X. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 16806.
- 30X. Yin, Y. Guo, H. Xie, W. Que, L. B. Kong, Sol. RRL 2019, 3, 1900001.
- 31M. Zhang, J. S. Yun, Q. Ma, J. Zheng, C. F. J. Lau, X. Deng, J. Kim, D. Kim, J. Seidel, M. A. Green, ACS Energy Lett. 2017, 2, 438.
- 32Y. H. Park, I. Jeong, S. Bae, H. J. Son, P. Lee, J. Lee, C. H. Lee, M. J. Ko, Adv. Funct. Mater. 2017, 27, 1605988.
- 33T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. Macdonald, J. Peng, M. Lockrey, Nano Energy 2016, 30, 330.
- 34M. I. Dar, N. Arora, P. Gao, S. Ahmad, M. Grätzel, M. K. Nazeeruddin, Nano Lett. 2014, 14, 6991.
- 35B. Yang, J. Keum, O. S. Ovchinnikova, A. Belianinov, S. Chen, M.-H. Du, I. N. Ivanov, C. M. Rouleau, D. B. Geohegan, K. Xiao, J. Am. Chem. Soc. 2016, 138, 5028.
- 36D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, M. Li, Nanoscale 2019, 11, 1228.
- 37T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, K. Weber, K. Catchpole, Adv. Energy Mater. 2017, 7, 1700228.
- 38J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, Nat. Commun. 2018, 9, 3021.
- 39Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You, Science 2022, 377, 531.
- 40D. J. Kubicki, D. Prochowicz, A. Hofstetter, S. M. Zakeeruddin, M. Grätzel, L. Emsley, J. Am. Chem. Soc. 2017, 139, 14173.
- 41S. Wieghold, J. Tresback, J.-P. Correa-Baena, N. T. P. Hartono, S. Sun, Z. Liu, M. Layurova, Z. A. VanOrman, A. S. Bieber, J. Thapa, Chem. Mater. 2019, 31, 3712.
- 42J.-P. Correa-Baena, Y. Luo, T. M. Brenner, J. Snaider, S. Sun, X. Li, M. A. Jensen, N. T. P. Hartono, L. Nienhaus, S. Wieghold, Science 2019, 363, 627.
- 43S.-H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M.-J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, J.-P. Correa-Baena, Energy Environ. Sci. 2018, 11, 78.
- 44I. J. Park, S. Seo, M. A. Park, S. Lee, D. H. Kim, K. Zhu, H. Shin, J. Y. Kim, ACS Appl. Mater. Interfaces 2017, 9, 41898.
- 45Y. Hu, M. F. Aygüler, M. L. Petrus, T. Bein, P. Docampo, ACS Energy Lett. 2017, 2, 2212.
- 46C. C. Boyd, R. C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi, A. Onno, S. Kavadiya, C. Chosy, E. J. Wolf, J. Werner, J. A. Raiford, C. de Paula, A. F. Palmstrom, Z. J. Yu, J. J. Berry, S. F. Bent, Z. C. Holman, J. M. Luther, E. L. Ratcliff, N. R. Armstrong, M. D. McGehee, Joule 2020, 4, 1759.
- 47M. M. Tavakoli, P. Yadav, D. Prochowicz, M. Sponseller, A. Osherov, V. Bulović, J. Kong, Adv. Energy Mater. 2019, 9, 1803587.
- 48J. Chae, Q. Dong, J. Huang, A. Centrone, Nano Lett. 2015, 15, 8114.
- 49X. Hou, Y. Hu, H. Liu, A. Mei, X. Li, M. Duan, G. Zhang, Y. Rong, H. Han, J. Mater. Chem. A 2017, 5, 73.
- 50L. Gao, X. Li, Y. Liu, J. Fang, S. Huang, I. Spanopoulos, X. Li, Y. Wang, L. Chen, G. Yang, ACS Appl. Mater. 2020, 12, 43885.
- 51G. Kieslich, S. Sun, A. K. Cheetham, Chem. Sci. 2014, 5, 4712.
- 52M. Szafrański, M. Jarek, CrystEngComm 2013, 15, 4617.
- 53E. von Hauff, J. Phys. Chem. C 2019, 123, 11329.
- 54N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, K. Miyano, ACS Appl. Mater. Interfaces 2016, 8, 4644.
- 55K. Miyano, M. Yanagida, N. Tripathi, Y. Shirai, Appl. Phys. Lett. 2015, 106, 093903.
- 56W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Graetzel, Adv. Energy Mater. 2015, 5, 1400812.
- 57J. C. Yu, S. Badgujar, E. D. Jung, V. K. Singh, D. W. Kim, J. Gierschner, E. Lee, Y. S. Kim, S. Cho, M. S. Kwon, M. H. Song, Adv. Mater. 2019, 31, 1805554.
- 58L. Bertoluzzi, C. C. Boyd, N. Rolston, J. Xu, R. Prasanna, B. C. O'Regan, M. D. McGehee, Joule 2020, 4, 109.
- 59E. Aktas, N. Phung, H. Köbler, D. A. González, M. Méndez, I. Kafedjiska, S.-H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, E. Palomares, Energy Environ. Sci. 2021, 14, 3976.