Promising Mass-Productive 4-Inch Commercial SERS Sensor with Particle in Micro-Nano Porous Ag/Si/Ag Structure Using in Auxiliary Diagnosis of Early Lung Cancer
Yuanmei Gao
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorHongyu Zhu
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorXiaoxiong Wang
College of Physics, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorRong Shen
Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021 P.R. China
Search for more papers by this authorXiaoming Zhou
Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021 P.R. China
Search for more papers by this authorXiaofei Zhao
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorZhen Li
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorChao Zhang
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorCorresponding Author
Fengcai Lei
College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Yu
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYuanmei Gao
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorHongyu Zhu
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorXiaoxiong Wang
College of Physics, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorRong Shen
Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021 P.R. China
Search for more papers by this authorXiaoming Zhou
Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021 P.R. China
Search for more papers by this authorXiaofei Zhao
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorZhen Li
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorChao Zhang
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
Search for more papers by this authorCorresponding Author
Fengcai Lei
College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Yu
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The construction of commercial surface enhanced Raman scattering (SERS) sensors suitable for clinical applications is a pending problem, which is heavily limited by the low production of high-performance SERS bases, because they usually require fine or complicated micro/nano structures. To solve this issue, herein, a promising mass-productive 4-inch ultrasensitive SERS substrate available for early lung cancer diagnosis is proposed, which is designed with a special architecture of particle in micro-nano porous structure. Benefitting from the effective cascaded electric field coupling inside the particle-in-cavity structure and efficient Knudsen diffusion of molecules within the nanohole, the substrate exhibits remarkable SERS performance for gaseous malignancy biomarker, with the limit of detection is 0.1 ppb and the average relative standard deviation value at different scales (from cm2 to µm2) is ≈16.5%. In practical application, this large-sized sensor can be further divided into small ones (1 × 1 cm2), and more than 65 chips will be obtained from just one 4-inch wafer, greatly increasing the output of commercial SERS sensor. Further, a medical breath bag composed of this small chip is designed and studied in detail here, which suggested high-specificity recognition for lung cancer biomarker in mixed mimetic exhalation tests.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.;
Supporting Information
Filename | Description |
---|---|
smll202207324-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Ghosal, P. Kloer, K. E. Lewis, Postgrad. Med. J. 2009, 85, 358.
- 2S. B. Knight, P. A. Crosbie, H. Balata, J. Chudziak, T. Hussell, C. Dive, Open Biol. 2017, 7, 170070.
- 3Y. Huang, T. H. Xie, K. Zou, Y. Q. Gu, G. H. Yang, F. L. Zhang, L. L. Qu, S. K. Yang, Nanoscale 2021, 13, 13344.
- 4M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Chem. Rev. 2012, 112, 5949.
- 5J. Rudnicka, T. Kowalkowski, B. Buszewski, Lung Cancer 2019, 135, 123.
- 6O. Barash, N. Peled, F. R. Hirsch, H. Haick, Small 2009, 5, 2618.
- 7M. Lafuente, S. De Marchi, M. Urbiztondo, I. Pastoriza-Santos, I. Perez-Juste, J. Santamaria, R. Mallada, M. Pina, ACS Sens. 2021, 6, 2241.
- 8X. Z. Qiao, B. S. Su, C. Liu, Q. Song, D. Luo, G. Mo, T. Wang, Adv. Mater. 2018, 30, 1702275.
- 9J. Li, H. Liu, S. Y. Chen, X. Liang, Y. M. Gao, X. F. Zhao, Z. Li, C. Zhang, F. C. Lei, J. Yu, J. Phys. Chem. Lett. 2022, 13, 5815.
- 10X. Z. Qiao, X. Y. Chen, C. H. Huang, A. L. Li, X. Li, Z. L. Lu, T. Wang, Angew. Chem., Int. Ed. 2019, 58, 16523.
- 11H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, B. D. Wang, ACS Sustainable Chem. Eng. 2019, 7, 5200.
- 12Z. Zhang, W. Yu, J. Wang, D. Luo, X. Z. Qiao, X. Y. Qin, T. Wang, Anal. Chem. 2017, 89, 1416.
- 13D. Xu, M. Muhammad, L. Chu, Q. Sun, C. Y. Shen, Q. Huang, Anal. Chem. 2021, 93, 8228.
- 14L. W. Ma, H. Wu, Y. Huang, S. M. Zou, J. H. Li, Z. J. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 27162.
- 15G. C. Phan-Quang, H. K. Lee, H. W. Teng, C. S. L. Koh, B. Q. Yim, E. K. M. Tan, W. L. Tok, I. Y. Phang, X. Y. Ling, Angew. Chem., Int. Ed. 2018, 57, 5792.
- 16Q. Q. Ding, J. Wang, X. Y. Chen, H. Liu, Q. J. Li, Y. L. Wang, S. K. Yang, Nano Lett. 2020, 20, 7304.
- 17Y. Fang, N. H. Seong, D. D. Dlott, Science 2008, 321, 388.
- 18M. H. Ge, P. Li, G. L. Zhou, S. Y. Chen, W. Han, F. Qin, Y. M. Nie, Y. X. Wang, M. Qin, G. Y. Huang, S. F. Li, Y. T. Wang, L. B. Yang, Z. Q. Tian, J. Am. Chem. Soc. 2021, 143, 7769.
- 19S. Cong, Z. Wang, W. B. Gong, Z. G. Chen, W. B. Lu, J. R. Lombardi, Z. G. Zhao, Nat. Commun. 2019, 10, 678.
- 20J. Langer, D. J. de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. G. de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Ka, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, et al., ACS Nano 2020, 14, 28.
- 21J. Yu, M. S. Yang, Z. Li, C. D. Liu, Y. S. Wei, C. Zhang, B. Y. Man, F. C. Lei, Anal. Chem. 2020, 92, 14754.
- 22F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, J. J. Baumberg, Nano Lett. 2011, 11, 1221.
- 23D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Sol. Energy 2004, 76, 277.
- 24X. Y. Ye, S. Zou, K. X. Chen, J. J. Li, J. Huang, F. Cao, X. S. Wang, L. J. Zhang, X. F. Wang, M. R. Shen, X. D. Su, Adv. Funct. Mater. 2014, 24, 6708.
- 25X. Jin, Q. Y. Zhu, L. Feng, X. Li, H. Y. Zhu, H. Y. Miao, Z. F. Zeng, Y. D. Wang, Y. Li, L. K. Wang, X. F. Liu, G. Shi, ACS Appl. Mater. Interfaces 2021, 13, 11535.
- 26X. X. Li, Y. Shang, J. Lin, A. R. Li, X. T. Wang, B. Li, L. Guo, Adv. Funct. Mater. 2018, 28, 1704288.
- 27S. E. Han, G. Chen, Nano Lett. 2010, 10, 4692.
- 28S. H. Zhong, W. J. Wang, Y. F. Zhuang, Z. G. Huang, W. Z. Shen, Adv. Funct. Mater. 2016, 26, 4768.
- 29F. X. Liang, X. Y. Zhao, J. J. Jiang, J. G. Hu, W. Q. Xie, J. Lv, Z. X. Zhang, D. Wu, L. B. Luo, Small 2019, 15, 1903831.
- 30Y. Hou, E. Aydin, M. De Bastiani, C. X. Xiao, F. H. Isikgor, D. J. Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S. W. Baek, Z. R. Huang, M. Y. Wei, Y. T. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. Van Kerschaver, M. I. Saidaminov, D. Baran, Q. Q. Qiao, K. Zhu, S. De Wolf, E. H. Sargent, Science 2020, 367, 1135.
- 31F. Sahli, J. Werner, B. A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. D. Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Nat. Mater. 2018, 17, 820.
- 32J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, X. L. Xu, Appl. Phys. Lett. 2013, 103, 011601.
- 33X. G. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, D. J. Fray, Environ. Sci. 2014, 7, 3223.
- 34C. Huo, J. Wang, H. Fu, X. Li, Y. Yang, H. Wang, A. Mateen, G. Farid, K. Q. Peng, Adv. Funct. Mater. 2020, 30, 2005744.
- 35Z. P. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Adv. Mater. 2011, 23, 285.
- 36B. Coasne, F. R. Hung, R. J. M. Pellenq, F. R. Siperstein, K. E. Gubbins, Langmuir 2006, 22, 194.
- 37K. Gao, G. J. Guo, M. M. Zhang, Z. C. Zhang, B. Peng, Energy Fuel 2021, 35, 4893.
- 38J. Hur, S. Park, J. H. Kim, J. Y. Cho, B. Kwon, J. H. Lee, G. Y. Bae, H. Kim, J. T. Han, W. H. Lee, ACS Sustainable Chem. Eng. 2022, 10, 3227.
- 39C. K. Ho, S. W. Webb, Gas Transport in Porous Media, Springer, Dordrecht, Netherlands, 2006.
- 40J. Chen, X. L. Jiang, J. D. Xue, H. G. Wang, X. M. Zheng, J. Raman Spectrosc. 2019, 50, 684.
- 41M. Lee, J. P. Lee, H. Rhee, J. Choo, Y. G. Chai, E. K. Lee, J. Raman Spectrosc. 2003, 34, 737.
- 42Y. F. Huang, H. P. Zhu, G. K. Liu, D. Y. Wu, B. Ren, Z. Q. Tian, J. Am. Chem. Soc. 2010, 132, 9244.
- 43M. Serasanambati, Y. Y. Broza, A. Marmur, H. Haick, iScience 2019, 11, 178.