Multifunctional Resonance Bridge-Mediated Dynamic Modulation of Perovskite Films For Enhanced Intrinsic Stability of Photovoltaics
Ligang Xu
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Geyu Road, Wuhan, 430000 China
Search for more papers by this authorWei Qiu
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMing Feng
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorZuowei Liang
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorWei Qian
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCefeng Zhou
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorDaiquan Zhang
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMeicheng Li
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 2 Beinong Road, Beijing, 100000 China
Search for more papers by this authorCorresponding Author
Wenzhen Lv
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ye Tao
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorRunfeng Chen
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorLigang Xu
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Geyu Road, Wuhan, 430000 China
Search for more papers by this authorWei Qiu
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMing Feng
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorZuowei Liang
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorWei Qian
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCefeng Zhou
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorDaiquan Zhang
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMeicheng Li
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 2 Beinong Road, Beijing, 100000 China
Search for more papers by this authorCorresponding Author
Wenzhen Lv
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ye Tao
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorRunfeng Chen
Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorAbstract
The improving intrinsic stability, determining the life span of devices, is a challenging task in the industrialization of inverted perovskite solar cells. The most important prerequisite for boosting intrinsic stability is high-quality perovskite films deposition. Here, a molecule, N-(2-pyridyl)pivalamide (NPP) is utilized, as a multifunctional resonance bridge between poly(triarylamine) (PTAA) and perovskite film to regulate the perovskite film quality and promote hole extraction for enhancing the device intrinsic stability. The pyridine groups in NPP couple with the phenyl groups in PTAA through π−π stacking to improve hole extraction capacities and minimize interfacial charge recombination, and the resonance linkages (NCO) in NPP dynamically modulate the perovskite buried defects through strong PbO bonds based on the fast self-adaptive tautomerization between resonance forms (NCO and N+CO−). Because of the combined effect of the reduction defect density and improved energy level in the perovskite buried interfaces as well as the optimized crystal orientation in perovskite film enabled by the NPP substrate, the devices based on NPP-grown perovskite films show an efficiency approaching 20% with negligible hysteresis. More impressively, the unencapsulated device displays start-of-the-art intrinsic photostability, operating under continuous 1-sun illumination for 2373 h at 65 °C without loss of PCE.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202207226-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, Science 2016, 354, 861.
- 2B. Chen, Z. J. Yu, S. Manzoor, S. Wang, W. Weigand, Z. Yu, G. Yang, Z. Ni, X. Dai, Z. C. Holman, J. Huang, Joule 2020, 4, 850.
- 3K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2020, 5, 870.
- 4P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong, Y. Sha, W. Tang, P. Zhang, Y. Wu, W. Chen, X. Yang, H. Chen, L. Han, Adv. Energy Mater. 2020, 10, 1903487.
- 5L. Xu, Y. Liu, W. Qiu, Y. Li, H. Wang, M. Li, L. Xian, C. Zheng, Y. Chen, R. Chen, J. Power Sources 2021, 506, 230120.
- 6L. Xu, D. Wu, W. Lv, Y. Xiang, Y. Liu, Y. Tao, J. Yin, M. Qian, P. Li, L. Zhang, S. Chen, O. F. Mohammed, O. M. Bakr, Z. Duan, R. Chen, W. Huang, Adv. Mater. 2022, 34, 2107111.
- 7X. Sun, Z. Li, X. Yu, X. Wu, C. Zhong, D. Liu, D. Lei, A. K.-Y. Jen, Z. a. Li, Z. Zhu, Angew. Chem., Int. Ed. 2021, 60, 7227.
- 8R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. u. Rehman, C.-L. Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. D. Bastiani, E. Aydin, S. D. Wolf, Science 2022, 376, 73.
- 9X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 2022, 375, 434.
- 10W. X. Lv, Z. Y. Hu, W. Qiu, D. D. Yan, M. C. Li, A. Y. Mei, L. G. Xu, R. F. Chen, Adv. Sci. 2022, 9, 2202028.
- 11X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang, L. Han, Energy Environ. Sci. 2020, 13, 3823.
- 12J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 2013, 25, 3727.
- 13Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278.
- 14H. Min, D. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2021, 598, 444.
- 15Y. Cheng, L. Ding, Energy Environ. Sci. 2021, 14, 3233.
- 16Y. Cheng, Q.-D. Yang, L. Ding, Sci. Bull. 2021, 66, 100.
- 17Q. Yang, X. Wang, S. Yu, X. Liu, P. Gao, X. Hu, G. Hou, S. Chen, X. Guo, C. Li, Adv. Energy Mater. 2021, 11, 2100493.
- 18L. Xu, H. Wang, X. Feng, Y. Zhou, Y. Chen, R. Chen, W. Huang, Adv Photonics Res 2021, 2, 2000132.
- 19M. Li, H. Li, Q. Zhuang, D. He, B. Liu, C. Chen, B. Zhang, T. Pauporté, Z. Zang, J. Chen, Angew. Chem., Int. Ed. 2022, 61, e202206914.
- 20Y. H. Deng, X. P. Zheng, Y. Bai, Q. Wang, J. J. Zhao, J. S. Huang, Nat. Energy 2018, 3, 560.
- 21Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science 2020, 367, 1352.
- 22G. Xu, R. Xue, S. J. Stuard, H. Ade, C. Zhang, J. Yao, Y. Li, Y. Li, Adv. Mater. 2021, 33, 2006753.
- 23X. X. Liu, Y. H. Cheng, C. Liu, T. X. Zhang, N. D. Zhang, S. W. Zhang, J. S. Chen, Q. H. Xu, J. Y. Ouyang, H. Gong, Energy Environ. Sci. 2019, 12, 1622.
- 24Q. Zhou, J. Qiu, Y. Wang, M. Yu, J. Liu, X. Zhang, ACS Energy Lett. 2021, 6, 1596.
- 25J. Cao, G. Tang, P. You, T. Wang, F. Zheng, J. Zhao, F. Yan, Adv. Funct. Mater. 2020, 30, 2002358.
- 26H. Jiang, Y. Tao, J. Jin, Y. Dai, L. Xian, J. Wang, S. Wang, R. Chen, C. Zheng, W. Huang, Mater. Horiz. 2020, 7, 3298.
- 27L. G. Xu, Y. F. Li, C. Zhang, Y. Liu, C. Zheng, W. Z. Lv, M. G. Li, Y. H. Chen, W. Huang, R. F. Chen, Sol. Energy Mater. Sol. C. 2020, 206, 110316
- 28L. G. Xu, M. Y. Qian, C. Zhang, W. Z. Lv, J. B. Jin, J. S. Zhang, C. Zheng, M. G. Li, R. F. Chen, W. Huang, Nano Energy 2020, 67, 104244.
- 29H. Li, J. Shi, J. Deng, Z. Chen, Y. Li, W. Zhao, J. Wu, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Mater. 2020, 32, 1907396.
- 30J. Yang, Q. Cao, Z. He, X. Pu, T. Li, B. Gao, X. Li, Nano Energy 2021, 82, 105731.
- 31M. A. R. Laskar, W. Luo, N. Ghimire, A. H. Chowdhury, B. Bahrami, A. Gurung, K. M. Reza, R. Pathak, R. S. Bobba, B. S. Lamsal, K. Chen, M. T. Rahman, S. I. Rahman, K. Emshadi, T. Xu, M. Liang, W.-H. Zhang, Q. Qiao, Adv. Funct. Mater. 2020, 30, 2000778.
- 32R. H. Bube, J. Appl. Phys. 1962, 33, 1733.
- 33L. Xu, C. Zhang, X. Feng, W. Lv, Z. Huang, W. Lv, C. Zheng, G. Xing, W. Huang, R.-F. Chen, J. Mater. Chem. A 2021, 9, 16943.
- 34X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian, V. A. Öberg, M. B. Johansson, U. B. Cappel, O. Karis, J. Liu, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Energy Mater. 2018, 8, 1702049.