Terminal Group-Oriented Self-Assembly to Controllably Synthesize a Layer-by-Layer SnSe2 and MXene Heterostructure for Ultrastable Lithium Storage
Xianglong Kong
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorXiaohan Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorChen Li
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorZhuoming Jia
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Chengkai Yang
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhuoyan Wu
Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038 P. R. China
Search for more papers by this authorXudong Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorYing Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorFei He
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorYueming Ren
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Piaoping Yang
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiliang Liu
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXianglong Kong
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorXiaohan Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorChen Li
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorZhuoming Jia
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Chengkai Yang
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhuoyan Wu
Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038 P. R. China
Search for more papers by this authorXudong Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorYing Zhao
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorFei He
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorYueming Ren
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Piaoping Yang
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiliang Liu
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Heterostructured materials integrate the advantages of adjustable electronic structure, fast electron/ions transfer kinetics, and robust architectures, which have attracted considerable interest in the fields of rechargeable batteries, photo/electrocatalysis, and supercapacitors. However, the construction of heterostructures still faces some severe problems, such as inferior random packing of components and serious agglomeration. Herein, a terminal group-oriented self-assembly strategy to controllably synthesize a homogeneous layer-by-layer SnSe2 and MXene heterostructure (LBL-SnSe2@MXene) is designed. Benefitting from the abundant polar terminal groups on the MXene surface, Sn2+ is induced into the interlayer of MXene with large interlayer spacing, which is selenized in situ to obtain LBL-SnSe2@MXene. In the heterostructure, SnSe2 layers and MXene layers are uniformly intercalated in each other, superior to other heterostructures formed by random stacking. As an anode for lithium-ion batteries, the LBL-SnSe2@MXene is revealed to possess strong lithium adsorption ability, the small activation energy for lithium diffusion, and excellent structure stability, thus achieving outstanding electrochemical performance, especially with high specific capacities (1311 and 839 mAh g−1 for initial discharge and charge respectively) and ultralong cycling stability (410 mAh g−1 at 5C even after 16 000 cycles). This work conveys an inspiration for the controllable design and construction of homogeneous layered heterostructures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202206563-sup-0001-SuppMat.pdf850.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, G. Ceder, Chem. Rev. 2021, 121, 1623.
- 2J. Liu, D. Xie, W. Shi, P. Cheng, Chem. Soc. Rev. 2020, 49, 1624.
- 3K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten, Adv. Energy Mater. 2020, 10, 2001310.
- 4X. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang, Z. Zhou, X. H. Bu, Electrochem. Energy Rev. 2018, 2, 29.
10.1007/s41918-018-0024-x Google Scholar
- 5Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Chem. Rev. 2015, 115, 5159.
- 6Y. G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D. S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 2020, 5, 299.
- 7Y. Wang, F. Chu, J. Zeng, Q. Wang, T. Naren, Y. Li, Y. Cheng, Y. Lei, F. Wu, ACS Nano 2021, 15, 210.
- 8X. Zhao, X. Kong, Z. Liu, Z. Li, Z. Xie, Z. Wu, F. He, X. Chang, P. Yang, J. Zheng, X. Li, Nano Today 2021, 40, 101245.
- 9F. Xin, M. S. Whittingham, Electrochem. Energy Rev. 2020, 3, 643.
- 10M. Zhang, T. Wang, G. Cao, Int. Mater. Rev. 2015, 60, 330.
- 11L. Wu, T. Ma, Y. Li, Y. Yang, H. H. Li, S. H. Yu, Energy Fuels 2021, 35, 19146.
- 12H. Chen, R. Liu, Y. Wu, J. Cao, J. Chen, Y. Hou, Y. Guo, R. Khatoon, L. Chen, Q. Zhang, Q. He, J. Lu, Chem. Eng. J. 2021, 407, 126973.
- 13X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T. Zhai, Adv. Mater. 2015, 27, 8035.
- 14L. Yu, L. Qin, X. Xu, K. Kim, J. Liu, J. Kang, K. Ho Kim, Chem. Eng. J. 2022, 431, 133463.
- 15X. Z. Li, J. P. Qu, Y. S. Zhao, Q. Z. Lai, P. F. Wang, T. F. Yi, Composites, Part B 2022, 242, 110045.
- 16H. Chen, Y. Guo, P. Ma, R. Hu, R. Khatoon, Y. Lu, H. Zhu, J. Lu, J. Electroanal. Chem. 2019, 847, 113205.
- 17Q. Yu, B. Wang, J. Wang, S. Hu, J. Hu, Y. Li, Front Chem 2020, 8, 590.
- 18Z. Huang, B. Liu, D. Kong, Y. Wang, H. Yang, Energy Storage Mater. 2018, 10, 92.
- 19D. Yeol Jo, S. K. Park, Appl. Surf. Sci. 2022, 571, 151293.
- 20G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater. 2016, 28, 7580.
- 21H. E. Wang, X. Zhao, K. Yin, Y. Li, L. Chen, X. Yang, W. Zhang, B. L. Su, G. Cao, ACS Appl. Mater. Interfaces 2017, 9, 43665.
- 22E. Pomerantseva, Y. Gogotsi, Nat. Energy 2017, 2, 17089.
- 23S. Shi, Z. Li, Y. Sun, B. Wang, Q. Liu, Y. Hou, S. Huang, J. Huang, Y. Zhao, Nano Energy 2018, 48, 510.
- 24P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu, B. Xu, Nano-Micro Lett. 2019, 11, 81.
- 25J. Ru, T. He, B. Chen, Y. Feng, L. Zu, Z. Wang, Q. Zhang, T. Hao, R. Meng, R. Che, C. Zhang, J. Yang, Angew. Chem., Int. Ed. 2020, 59, 14621.
- 26R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng, L. Zheng, L. Zheng, Z. Chen, G. Liu, B. Chen, Y. Mi, J. Yang, Adv. Energy Mater. 2018, 8, 1801514.
- 27G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 28Z. X. Ge, T. J. Wang, Y. Ding, S. B. Yin, F. M. Li, P. Chen, Y. Chen, Adv. Energy Mater. 2022, 12, 2103916.
- 29J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 30H. T. Larijani, M. Jahanshahi, M. D. Ganji, M. H. Kiani, Phys. Chem. Chem. Phys. 2017, 19, 1896.
- 31C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem., Int. Ed. 2018, 57, 1846.
- 32Q. He, B. Yu, Z. Li, Y. Zhao, Energy Environ. Mater. 2019, 2, 264.
- 33Z. W. Gao, W. Zheng, L. Y. S. Lee, Small 2019, 15, 1902649.
- 34J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li, Y. Li, Adv. Mater. 2017, 29, 1702061.
- 35D. Er, J. Li, M. Naguib, Y. Gogotsi, V. B. Shenoy, ACS Appl. Mater. Interfaces 2014, 6, 11173.
- 36M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992.
- 37M. Lu, W. Han, H. Li, W. Shi, J. Wang, B. Zhang, Y. Zhou, H. Li, W. Zhang, W. Zheng, Energy Storage Mater. 2019, 16, 163.
- 38E. Li, Y. Pan, C. Wang, C. Liu, C. Shen, C. Pan, X. Liu, Chem. Eng. J. 2021, 420, 129864.
- 39F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D. B. Velusamy, U. Schwingenschlögl, H. N. Alshareef, Adv. Energy Mater. 2016, 6, 1601188.
- 40S. Veeralingam, P. Sahatiya, S. Badhulika, Sens. Actuators, B 2019, 297, 126725.
- 41W. Y. Chen, H. Lin, A. K. Barui, A. M. U. Gomez, M. K. Wendt, L. A. Stanciu, ACS Appl. Nano Mater. 2021, 5, 1902.
- 42J. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, M. H. Rummeli, Chem. Soc. Rev. 2019, 48, 72.
- 43E. P. Mukhokosi, S. B. Krupanidhi, K. K. Nanda, Sci. Rep. 2017, 7, 15215.
- 44K. Yang, X. Zhang, K. Song, J. Zhang, C. Liu, L. Mi, Y. Wang, W. Chen, Electrochim. Acta 2020, 337, 135783.
- 45Y. Zhang, W. Zhong, P. Tan, Y. Niu, X. Zhang, M. Xu, Inorg. Chem. Front. 2021, 8, 4796.
- 46J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 2017, 27, 1701264.
- 47Y. Wang, J. Wang, G. Han, C. Du, Q. Deng, Y. Gao, G. Yin, Y. Song, Ceram. Int. 2019, 45, 2411.
- 48X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, Appl. Catal., B 2021, 286, 119885.
- 49M. Kumar, P. Sharma, S. Rani, M. Kumar, V. N. Singh, AIP Adv. 2021, 11, 025040.
- 50Y. A. Romaniuk, S. Golovynskyi, A. P. Litvinchuk, D. Dong, Y. Lin, O. I. Datsenko, M. Bosi, L. Seravalli, I. S. Babichuk, V. O. Yukhymchuk, B. Li, J. Qu, Phys. E 2022, 136, 114999.
- 51K. G. Zhou, F. Withers, Y. Cao, S. Hu, G. L. Yu, C. Casiraghi, ACS Nano 2014, 8, 9914.
- 52L. Cheng, Q. Chen, J. Li, H. Liu, Appl. Catal., B 2020, 267, 118379.
- 53S. Lu, L. Sui, Y. Liu, X. Yong, G. Xiao, K. Yuan, Z. Liu, B. Liu, B. Zou, B. Yang, Adv. Sci. 2019, 6, 1801470.
- 54D. Zhang, G. Li, B. Li, J. Fan, D. Chen, X. Liu, L. Li, Chem. Commun. 2018, 54, 7689.
- 55L. Yu, K. S. Kim, G. Saeed, J. Kang, K. H. Kim, ChemElectroChem 2021, 8, 4732.
- 56X. Chang, Z. Xie, Z. Liu, X. Zheng, J. Zheng, X. Li, Energy Storage Mater. 2020, 25, 93.
- 57X. Kong, Z. Li, X. Zhao, S. Chen, Z. Wu, F. He, P. Yang, X. Chang, X. Li, Z. Liu, J. Zheng, Nano Res. 2022, https://doi.org/10.1007/s12274-022-4776-6.
- 58G. Li, H. Chen, B. Zhang, H. Guo, S. Chen, X. Chang, X. Wu, J. Zheng, X. Li, Appl. Surf. Sci. 2022, 582, 152404.
- 59Z. Liu, S. Yang, B. Sun, X. Chang, J. Zheng, X. Li, Angew. Chem., Int. Ed. 2018, 57, 10187.
- 60J. Choi, J. Jin, I. G. Jung, J. M. Kim, H. J. Kim, S. U. Son, Chem. Commun. 2011, 47, 5241.
- 61S. Foley, H. Geaney, T. Kennedy, I. Aminu, G. Bree, K. McCarthy, S. Darwish, S. Connolly, S. Mukherjee, V. Lebedev, M. J. Zaworotko, K. M. Ryan, J. Phys. Chem. C 2021, 125, 1180.
- 62T. Fan, Y. Wu, J. Li, W. Zhong, W. Tang, X. Zhang, M. Xu, New J. Chem. 2021, 45, 1944.
- 63H. Wang, X. Wang, Q. Li, H. Li, J. Xu, X. Li, H. Zhao, Y. Tang, G. Zhao, H. Li, H. Zhao, S. Li, ACS Appl. Mater. Interfaces 2018, 10, 38862.
- 64Y. Cheng, J. Huang, L. Cao, Y. Wang, Y. Ma, S. Xi, B. Shi, H. Xie, J. Li, Nano 2019, 14, 1950155.
- 65D. H. Lee, C. M. Park, ACS Appl. Mater. Interfaces 2017, 9, 15439.
- 66Y. Liu, C. Yang, Y. Li, F. Zheng, Y. Li, Q. Deng, W. Zhong, G. Wang, T. Liu, Chem. Eng. J. 2020, 393, 124590.
- 67J. Wen, Y. Pei, L. Liu, D. Su, M. Yang, Q. Wang, W. Zhang, J. Dai, Y. Feng, T. Wu, X. Wang, J. Alloys Compd. 2021, 874, 159961.
- 68J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, Adv. Sci. 2018, 5, 1800763.
- 69B. Li, H. Hu, H. Hu, C. Huang, D. Kong, Y. Li, Q. Xue, Z. Yan, W. Xing, X. Gao, Electrochim. Acta 2021, 370, 137717.
- 70Z. Yan, J. Li, Q. Chen, S. Chen, L. Luo, Y. Chen, Adv. Compos. Hybrid Mater. 2022, 5, 2977.
- 71S. Wang, X. Yang, P.-K. Lee, D. Y. W. Yu, J. Alloys Compd. 2021, 874, 159859.
- 72Z. Liu, S. Yang, B. Sun, P. Yang, J. Zheng, X. Li, Angew. Chem., Int. Ed. 2020, 59, 1975.
- 73F. Chu, M. Wang, J. Liu, Z. Guan, H. Yu, B. Liu, F. Wu, Adv. Funct. Mater. 2022, 32, 2205393.
- 74X. Chang, T. Wang, Z. Liu, X. Zheng, J. Zheng, X. Li, Nano Res. 2017, 10, 1950.
- 75T. Yang, M. Fang, J. Liu, D. Yang, Y. Liang, J. Zhong, Y. J. Yuan, Y. Zhang, X. Liu, R. Zheng, K. Davey, J. Zhang, Z. Guo, Adv. Funct. Mater. 2022, 32, 2205880.
- 76C. Wang, G. Li, H. Qin, Z. Xiao, D. Wang, B. Zhang, X. Ou, Y. Wu, Adv. Energy Mater. 2022, 12, 2200403.
- 77K. Guo, B. Xi, R. Wei, H. Li, J. Feng, S. Xiong, Adv. Energy Mater. 2020, 10, 1902913.
- 78X. Song, H. Wang, S. Jin, M. Lv, Y. Zhang, X. Kong, H. Xu, T. Ma, X. Luo, H. Tan, D. Hu, C. Deng, X. Chang, J. Xu, Nano Res. 2020, 13, 1659.
- 79H. Wang, X. Song, M. Lv, S. Jin, J. Xu, X. Kong, X. Li, Z. Liu, X. Chang, W. Sun, J. Zheng, X. Li, Small 2022, 18, 2104293.
- 80P. Lou, Z. Cui, Z. Jia, J. Sun, Y. Tan, X. Guo, ACS Nano 2017, 11, 3705.