Correlating the Dipolar Interactions Induced Magneto-Viscoelasticity and Thermal Conductivity Enhancements in Nanomagnetic Fluids
Rahul Singh
Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215 India
Search for more papers by this authorCorresponding Author
Saurabh Pathak
National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorKomal Jain
Indian Reference Materials Division, CSIR-National Physical Laboratory, Delhi, 110012 India
Search for more papers by this authorCorresponding Author
Noorjahan
Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorSang-Koog Kim
National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
Search for more papers by this authorRahul Singh
Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215 India
Search for more papers by this authorCorresponding Author
Saurabh Pathak
National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorKomal Jain
Indian Reference Materials Division, CSIR-National Physical Laboratory, Delhi, 110012 India
Search for more papers by this authorCorresponding Author
Noorjahan
Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorSang-Koog Kim
National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
Search for more papers by this authorAbstract
The effective thermal management of electronic system holds the key to maximize their performance. The recent miniaturization trends require a cooling system with high heat flux capacity, localized cooling, and active control. Nanomagnetic fluids (NMFs) based cooling systems have the ability to meet the current demand of the cooling system for the miniaturized electronic system. However, the thermal characteristics of NMFs have a long way to go before the internal mechanisms are well understood. This review mainly focuses on the three aspects to establish a correlation between the thermal and rheological properties of the NMFs. First, the background, stability, and factors affecting the properties of the NMFs are discussed. Second, the ferrohydrodynamic equations are introduced for the NMFs to explain the rheological behavior and relaxation mechanism. Finally, different theoretical and experimental models are summarized that explain the thermal characteristics of the NMFs. Thermal characteristics of the NMFs are significantly affected by the morphology and composition of the magnetic nanoparticles (MNPs) in NMFs as well as the type of carrier liquids and surface functionalization that also influences the rheological properties. Thus, understanding the correlation between the thermal characteristics of the NMFs and rheological properties helps develop cooling systems with improved performance.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1R. Verma, S. Singh, M. K. Dalai, M. Saravanan, V. V. Agrawal, A. K. Srivastava, Materials and Design 2017, 133, 10.
- 2R. Verma, A. Awasthi, P. Singh, R. Srivastava, H. Sheng, J. Wen, D. J. Miller, A. K. Srivastava, J. Colloid Interface Sci. 2016, 475, 82.
- 3J. Lee, S. Pathak, H. An, S.-K. Kim, J. Sci.: Adv. Mater. Devices 2023, 8, 100530.
- 4S. Pathak, R. Zhang, K. Bun, H. Zhang, B. Gayen, X. Wang, Sustainable Energy Technologies and Assessments 2021, 48, 101641.
- 5N. Zhang, B. Jiao, Y. Ye, Y. Kong, X. Du, R. Liu, B. Cong, L. Yu, S. Jia, K. Jia, Energy Convers. Manage. 2022, 253, 115124.
- 6W. Wang, J. V. I. Timonen, A. Carlson, D.-M. Drotlef, C. T. Zhang, S. Kolle, A. Grinthal, T.-S. Wong, B. Hatton, S. H. Kang, S. Kennedy, J. Chi, R. T. Blough, M. Sitti, L. Mahadevan, J. Aizenberg, Nature 2018, 559, 77.
- 7T. Jiralerspong, G. Bae, J.-H. Lee, S.-K. Kim, ACS Nano 2020, 14, 17589.
- 8X. Fan, X. Dong, A. C. Karacakol, H. Xie, M. Sitti, Proc. Natl. Acad. Sci. USA 2020, 117, 27916.
- 9S. Pathak, R. Zhang, B. Gayen, V. Kumar, H. Zhang, R. P. Pant, X. Wang, Sustainable Energy Technologies and Assessments 2022, 52, 102024.
- 10P. Kumar, S. Pathak, A. Singh, K. Jain, H. Khanduri, L. Wang, S.-K. Kim, R. P. Pant, J. Mater. Chem. C 2022, 10, 12652.
- 11R. Verma, S. Pathak, K. K. Dey, S. Sikarwar, B. C. Yadav, A. K. Srivastava, Nanoscale Adv. 2022, 4, 2902.
- 12S. Pathak, K. Jain, P. Kumar, X. Wang, R. P. Pant, Appl. Energy 2019, 239, 1524.
- 13A. Khosravi, M. Malekan, M. E. H. Assasd, Renewable Energy 2019, 134, 54.
- 14J.-H. Lee, Y. Kim, S.-K. Kim, Sci. Rep. 2022, 12, 5232.
- 15X. Zhang, L. Sun, Y. Yu, Y. Zhao, Adv. Mater. 2019, 31, 1903497.
- 16H. Wang, S. Chen, H. Li, X. Chen, J. Cheng, Y. Shao, C. Zhang, J. Zhang, L. Fan, H. Chang, R. Guo, X. Wang, N. Li, L. Hu, Y. Wei, J. Liu, Adv. Funct. Mater. 2021, 31, 2100274.
- 17M. Vasilakaki, I. Chikina, V. B. Shikin, N. Ntallis, D. Peddis, A. A. Varlamov, K. N. Trohidou, Appl. Mater. Today 2020, 19, 100587.
- 18J. Philip, J. M. Laskar, J. Nanofluids 2012, 1, 3.
- 19M. A. J. Hodenius, T. Niendorf, G. A. Krombach, W. Richtering, T. Eckert, H. Lueken, M. Speldrich, R. W. Günther, M. Baumann, S. J. H. Soenen, M. De Cuyper, T. Schmitz-Rode, J. Nanosci. Nanotechnol. 2008, 8, 2399.
- 20A. Elsaidy, J. P. Vallejo, V. Salgueiriño, L. Lugo, J. Mol. Liq. 2021, 344, 117727.
- 21L. Phor, T. Kumar, M. Saini, V. Kumar, MRS Adv. 2019, 4, 1611.
- 22S. Vinod, J. Philip, J. Mol. Liq. 2020, 298, 112047.
- 23E. Shojaeizadeh, F. Veysi, K. Goudarzi, M. Feyzi, J. Magn. Magn. Mater. 2019, 477, 292.
- 24W. Brullot, N. K. Reddy, J. Wouters, V. K. Valev, B. Goderis, J. Vermant, T. Verbiest, J. Magn. Magn. Mater. 2012, 324, 1919.
- 25N. Kaur, B. Chudasama, J. Magn. Magn. Mater. 2018, 451, 647.
- 26A. Alekseev, E. Nepomnyashchaya, E. Velichko, I. Pleshakov, in International Youth Conference on Electronics, Telecommunications and Information Technologies (Eds.: E. Velichko, V. Kapralova, P. Karaseov, S. Zavjalov, P. Angueira, S. Andreev), Springer International Publishing, Cham, 2022, pp. 457–463.
- 27X. Liu, D. Li, Funct. Mater. Lett. 2021, 14, 2151031.
- 28H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, A. J. Chamkha, Eur. Phys. J. Spec. Top. 2019, 228, 2531.
- 29M. Imran, A. Hussain Shaik, A. Rahman Ansari, A. Aziz, S. Hussain, A. F. F. Abouatiaa, A. Khan, M. Rehaan Chandan, RSC Adv. 2018, 8, 13970.
- 30 Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, Vol. 763 (Ed: S. Odenbach), Springer, Berlin, Heidelberg 2009.
10.1007/978-3-540-85387-9 Google Scholar
- 31S. Genc, B. Derin, Curr. Opin. Chem. Eng. 2014, 3, 118.
- 32S. Pathak, Optimization of Magneto-Viscoelasticity of Magnetic Fluids and Development of Its Applications in Thermal and Mechanical Systems, 2020.
- 33F. Selimefendigil, H. F. Öztop, K. Al-Salem, J. Magn. Magn. Mater. 2014, 372, 122.
- 34F. Selimefendigil, H. F. Öztop, International Journal 2015, 18, 439.
- 35C. Scherer, A. M. Figueiredo Neto, Braz. J. Phys. 2005, 35, 718.
- 36M. Ghadiri, M. Sardarabadi, M. Pasandideh-fard, A. J. Moghadam, Energy Convers. Manage. 2015, 103, 468.
- 37T. Ambreen, M.-H. Kim, Appl. Energy 2020, 264, 114684.
- 38A. Dadwal, P. A. Joy, J. Mol. Liq. 2020, 303, 112650.
- 39D. Kumar Mohapatra, P. J. Camp, J. Philip, Nanoscale Advances 2021, 3, 3573.
- 40S. Vinod, J. Philip, Adv. Colloid Interface Sci. 2022, 307, 102729.
- 41 Effective Medium Theory: Principles and Applications – Tuck C. Choy – Google Books.
- 42P. Dhak, M.-K. Kim, J. H. Lee, M. Kim, S.-K. Kim, J. Magn. Magn. Mater. 2017, 433, 47.
- 43P. M. Kumar, J. Kumar, R. Tamilarasan, S. Sendhilnathan, S. Suresh, Engineering Journal 2015, 19, 67.
- 44J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu, G. Chen, Nano Lett. 2009, 9, 4128.
- 45J. Avsec, Int. J. Heat Mass Transfer 2008, 51, 4589.
- 46C. Pang, J.-Y. Jung, Y. T. Kang, Int. J. Heat Mass Transfer 2014, 72, 392.
- 47S. M. S. Murshed, Contribution of Brownian Motion in Thermal Conductivity of Nanofluids, 2011.
- 48L. Kundan, S. S. Mallick, B. Pal, Powder Technol. 2017, 311, 273.
- 49J. Liao, A. Zhang, S. Qing, X. Zhang, Z. Luo, Powder Technol. 2022, 395, 584.
- 50J. Du, Q. Su, L. Li, R. Wang, Z. Zhu, Int. Commun. Heat Mass Transfer 2021, 127, 105501.
- 51L. Zhou, J. Zhu, Y. Zhao, H. Ma, Int. J. Heat Mass Transfer 2022, 183, 122124.
- 52S. Hashimoto, K. Nakajima, T. Kikuchi, K. Kamazawa, K. Shibata, T. Yamada, J. Mol. Liq. 2021, 342, 117580.
- 53N. P. Karagiannakis, E. D. Skouras, V. N. Burganos, Nanomaterials 2021, 12, 25.
- 54A. Mishra, S. Pathak, P. Kumar, A. Singh, K. Jain, R. Chaturvedi, D. Singh, G. A. Basheed, R. P. Pant, IEEE Trans. Magn. 2019, 55, 4601107.
- 55Y. Khetib, K. Sedraoui, A. Gari, Chem. Eng. Commun. 2022, 209, 1070.
- 56D. Zablotsky, S. Kralj, G. Kitenbergs, M. M. Maiorov, J. Non-Newtonian Fluid Mech. 2020, 278, 104248.
- 57Noorjahan, G. A. Basheed, K. Jain, S. Pathak, R. P. Pant, J. Nanosci. Nanotechnol. 2018, 18, 2746.
- 58A. P. Rosa, F. R. Cunha, Phys. Fluids 2019, 31, 052006.
- 59A. Singh, S. Pathak, P. Kumar, P. Sharma, A. Rathi, G. A. Basheed, K. K. Maurya, R. P. Pant, J. Magn. Magn. Mater. 2020, 493, 165737.
- 60P. G. de Gennes, P. A. Pincus, Phys Kondens Materie 1970, 11, 189.
10.1007/BF02422637 Google Scholar
- 61K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, A. P. Philipse, Nature Mater 2003, 2, 88.
- 62Z. Abdelmalek, A. Hussain, S. Bilal, E.-S. M. Sherif, P. Thounthong, J. Mater. Res. Technol. 2020, 9, 11948.
- 63R. Zanella, C. Nore, F. Bouillault, J.-L. Guermond, X. Mininger, J. Magn. Magn. Mater. 2019, 469, 52.
- 64A. N. Afifah, S. Syahrullail, N. Sidik, Renewable Sustainable Energy Rev. 2016, 55, 1030.
- 65H. L. Fu, L. Gao, Phys. Lett. A 2011, 375, 3588.
- 66K. Bashirnezhad, M. M. Rashidi, Z. Yang, S. Bazri, W.-M. Yan, J. Therm. Anal. Calorim. 2015, 122, 863.
- 67M. Kh. Abdolbaqi, N. A. C. Sidik, A. Aziz, R. Mamat, W. H. Azmi, M. N. A. W. M. Yazid, G. Najafi, Int. Commun. Heat Mass Transfer 2016, 77, 22.
- 68T. M. Batrudinov, Y. E. Nekhoroshkova, E. I. Paramonov, V. S. Zverev, E. A. Elfimova, A. O. Ivanov, P. J. Camp, Phys. Rev. E 2018, 98, 052602.
- 69N. S. S. Mousavi, S. Kumar, J. Appl. Phys. 2018, 123, 043902.
- 70J. Philip, P. D. Shima, B. Raj, Appl. Phys. Lett. 2007, 91, 203108.
- 71A. Fang, Phys. Fluids 2022, 34, 013319.
- 72P. D. Shima, J. Philip, B. Raj, Appl. Phys. Lett. 2009, 95, 133112.
- 73W. Lian, Y. Xuan, Q. Li, Energy Convers. Manage. 2009, 50, 35.
- 74L. Phor, V. Kumar, J. Adv. Ceram. 2020, 9, 243.
- 75N. Kaur, B. Chudasama, Colloid Polym. Sci. 2019, 297, 1403.
- 76E. Sadeghinezhad, M. Mehrali, A. R. Akhiani, S. Tahan Latibari, A. Dolatshahi-Pirouz, H. S. C. Metselaar, M. Mehrali, Appl. Therm. Eng. 2017, 114, 415.
- 77A. Hameed, A. Mukhtar, U. Shafiq, M. Qizilbash, M. S. Khan, T. Rashid, C. B. Bavoh, W. U. Rehman, A. Guardo, J. Mol. Liq. 2019, 277, 812.
- 78Z.-H. Liu, L. Liao, International Journal of Thermal Sciences 2010, 49, 2331.
- 79J.-C. Yang, F.-C. Li, W.-W. Zhou, Y.-R. He, B.-C. Jiang, Int. J. Heat Mass Transfer 2012, 55, 3160.
- 80Z. Li, D. Li, J. Dong, J. Yao, Y. Chen, J. Magn. Magn. Mater. 2021, 539, 168279.
- 81P. Kumar, S. Pathak, K. Jain, A. Singh, Kuldeep, G. A. Basheed, R. P. Pant, J. Alloys Compd. 2022, 904, 163992.
- 82P. Sharma, V. V. Alekhya, S. Pathak, K. Jain, P. Tomar, G. A. Basheed, K. K. Maurya, R. P. Pant, J. Magn. Magn. Mater. 2021, 534, 168024.
- 83S. Pathak, R. Verma, P. Kumar, A. Singh, S. Singhal, P. Sharma, K. Jain, R. P. Pant, X. Wang, Nanomaterials 2021, 11, 3009.
- 84S. Pathak, R. Verma, S. Singhal, R. Chaturvedi, P. Kumar, P. Sharma, R. P. Pant, X. Wang, Sci. Rep. 2021, 11, 3799.
- 85Noorjahan, S. Pathak, K. Jain, R. P. Pant, Colloids Surf. A 2018, 539, 273.
- 86P. Kumar, S. Pathak, A. Singh, H. Khanduri, Kuldeep, K. Jain, J. Tawale, L. Wang, G. A. Basheed, R. P. Pant, J. Alloys Compd. 2021, 887, 161418.
- 87P. Kumar, H. Khanduri, S. Pathak, A. Singh, G. A. Basheed, R. P. Pant, Dalton Trans. 2020, 49, 8672.
- 88D. Trpkov, M. Panjan, L. Kopanja, M. Tadić, Appl. Surf. Sci. 2018, 457, 427.
- 89J. A. Lopez-Perez, M. A. Lopez-Quintela, J. Mira, J. Rivas, IEEE Trans. Magn. 1997, 33, 4359.
- 90P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 2011, 11, 101.
- 91I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 2012, 324, 903.
- 92R. A. Jasso-Terán, D. A. Cortés-Hernández, H. J. Sánchez-Fuentes, P. Y. Reyes-Rodríguez, L. E. de-León-Prado, J. C. Escobedo-Bocardo, J. M. Almanza-Robles, J. Magn. Magn. Mater. 2017, 427, 241.
- 93I.-C. Masthoff, M. Kraken, D. Mauch, D. Menzel, J. A. Munevar, E. Baggio Saitovitch, F. J. Litterst, G. Garnweitner, J. Mater. Sci. 2014, 49, 4705.
- 94D. Parajuli, P. Taddesse, N. Murali, K. Samatha, Appl. Phys. A 2021, 128, 58.
- 95N. K. Cakmak, Z. Said, L. S. Sundar, Z. M. Ali, A. K. Tiwari, Powder Technol. 2020, 372, 235.
- 96M. Palihawadana-Arachchige, H. Nemala, V. M. Naik, R. Naik, J. Appl. Phys. 2017, 121, 023901.
- 97M. Amani, P. Amani, A. Kasaeian, O. Mahian, S. Wongwises, J. Mol. Liq. 2017, 230, 121.
- 98K. K. Kadyrzhanov, K. Egizbek, A. L. Kozlovskiy, M. V. Zdorovets, Nanomaterials 2019, 9, 8.
- 99T. Wang, X. Bian, C. Yang, S. Zhao, M. Yu, Appl. Surf. Sci. 2017, 399, 663.
- 100R. Verma, S. Pathak, A. K. Srivastava, S. Prawer, S. Tomljenovic-Hanic, J. Alloys Compd. 2021, 876, 160175,.
- 101S. B. Waje, M. Hashim, W. D. W. Yusoff, Z. Abbas, Appl. Surf. Sci. 2010, 256, 3122.
- 102M. Arana, P. G. Bercoff, S. E. Jacobo, P. M. Zélis, G. A. Pasquevich, Ceram. Int. 2016, 42, 1545.
- 103W. Wang, L. Zhuang, Y. Zhang, H. Shen, Mater. Res. Bull. 2015, 69, 61.
- 104P. Lemal, S. Balog, L. Ackermann-Hirschi, P. Taladriz-Blanco, A. M. Hirt, B. Rothen-Rutishauser, M. Lattuada, A. Petri-Fink, J. Magn. Magn. Mater. 2020, 499, 166176.
- 105A. O. Ivanov, A. Zubarev, Materials 2020, 13, 3956.
- 106S. Odenbach, Magnetoviscous Effects in Ferrofluids, Springer, Berlin 2002.
10.1007/3-540-45646-5_10 Google Scholar
- 107J.-C. Bacri, R. Perzynski, M. I. Shliomis, G. I. Burde, Phys. Rev. Lett. 1995, 75, 2128.
- 108M. Shliomis, Y.u. Raikher, IEEE Trans. Magn. 1980, 16, 237.
- 109H. Brenner, Int. J. Multiphase Flow 1974, 1, 195.
10.1016/0301-9322(74)90018-4 Google Scholar
- 110K. Jain, S. Pathak, P. Kumar, A. Singh, R. P. Pant, J. Magn. Magn. Mater. 2019, 475, 782.
- 111S. Pathak, K. Jain, Noorjahan, V. Kumar, R. P. Pant, IEEE Sens. J. 2017, 17, 2670.
- 112H. C. Brinkman, J. Chem. Phys. 1952, 20, 571.
- 113H. Shahnazian, S. Odenbach, J. Phys.: Condens. Matter 2008, 20, 204137.
- 114L. M. Pop, S. Odenbach, J. Phys.: Condens. Matter 2006, 18, S2785.
- 115O. Müller, D. Hahn, M. Liu, J. Phys.: Condens. Matter 2006, 18, S2623.
- 116S. A. Lira, J. A. Miranda, Phys. Rev. E 2009, 79, 046303.
- 117P. Kumar, S. Pathak, A. Singh, Kuldeep, H. Khanduri, X. Wang, G. A. Basheed, R. P. Pant, Mater. Chem. Phys. 2021, 265, 124476.
- 118P. C. Mishra, S. Mukherjee, S. K. Nayak, A. Panda, Int Nano Lett 2014, 4, 109.
- 119G. K. Batchelor, Journal of Fluid Mechanics 1977, 83, 97.
- 120J. Bicerano, J. F. Douglas, D. A. Brune, Journal of Macromolecular Science, Part C 1999, 39, 561.
10.1081/MC-100101428 Google Scholar
- 121E. Shel'deshova, A. Churaev, P. Ryapolov, Fluids 2023, 8, 47.
- 122D. Susan-Resiga, D. Bica, L. Vékás, J. Magn. Magn. Mater. 2010, 322, 3166.
- 123M. Chand, A. Shankar, Noorjahan, K. Jain, R. P. Pant, RSC Adv. 2014, 4, 53960.
- 124S. Odenbach, H. Störk, J. Magn. Magn. Mater. 1998, 183, 188.
- 125Z. Li, D. Li, Y. Chen, Soft Matter 2020, 16, 8202.
- 126T. G. Kang, M. A. Hulsen, J. M. J. den Toonder, Phys. Fluids 2012, 24, 042001.
- 127M. Kröger, P. Ilg, S. Hess, J. Phys.: Condens. Matter 2003, 15, S1403.
- 128L. Vékás, D. Bica, M. V. Avdeev, China Particuology 2007, 5, 43.
- 129T. Muthukumaran, G. Gnanaprakash, J. Philip, Journal of Nanofluids 2012, 1, 85.
- 130R. E. Rosensweig, J. W. Nestor, R. S. Timmins, Ferrohydrodynamic Fluids for Direct Conversion of Heat Energy, Institution of Chemical Engineers, United Kingdom 1965.
- 131N. Jahan, S. Pathak, K. Jain, R. P. Pant, Colloids Surf. A 2017, 529, 88.
- 132B. Huke, M. Lücke, Phys. Rev. E 2000, 62, 6875.
- 133D. J. Klingenberg, J. C. Ulicny, M. A. Golden, Journal of Rheology 2007, 51, 883.
- 134S. Melle, O. G. Calderón, M. A. Rubio, G. G. Fuller, Phys. Rev. E 2003, 68, 041503.
- 135X. Tang, X. Zhang, R. Tao, Y. Rong, J. Appl. Phys. 2000, 87, 2634.
- 136W. Nessab, H. Kahalerras, B. Fersadou, D. Hammoudi, Appl. Therm. Eng. 2019, 150, 271.
- 137J. M. Ginder, L. C. Davis, Appl. Phys. Lett. 1994, 65, 3410.
- 138E. Güneyisi, M. Gesoglu, N. Naji, S. İpek, Archiv. Civ. Mech. Eng 2016, 16, 9.
- 139J. de Vicente, D. J. Klingenberg, R. Hidalgo-Alvarez, Soft Matter 2011, 7, 3701.
- 140A. K. Sharma, A. K. Tiwari, A. R. Dixit, Renewable Sustainable Energy Rev. 2016, 53, 779.
- 141T. X. Phuoc, M. Massoudi, International Journal of Thermal Sciences 2009, 48, 1294.
- 142J. S. Kumar, P. S. Paul, G. Raghunathan, D. G. Alex, Int J Mech Mater Eng 2019, 14, 13.
- 143A. O. Ivanov, S. S. Kantorovich, Phys. Rev. E 2004, 70, 021401.
- 144J. Ramos, D. J. Klingenberg, R. Hidalgo-Alvarez, J. de Vicente, Journal of Rheology 2011, 55, 127.
- 145M. E. Ali, N. Sandeep, Results in Physics 2017, 7, 21.
- 146W. Huang, X. Wang, Lubrication Science 2016, 28, 3.
- 147M. Chand, S. Kumar, A. Shankar, R. Porwal, R. P. Pant, J. Non-Cryst. Solids 2013, 361, 38.
- 148A. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications Courier Corporation, New York, USA 1956.
- 149T. S. Lundgren, J. Fluid Mech. 1972, 51, 273.
- 150F. M. White, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York 1991.
- 151R. V. Mehta, Mater. Sci. Eng., C 2017, 79, 901.
- 152Z. Laherisheth, K. Parekh, R. V. Upadhyay, AIP Adv. 2017, 7, 025206.
- 153J. M. Laskar, J. Philip, B. Raj, Phys. Rev. E 2009, 80, 041401.
- 154V. I. Petrenko, O. P. Artykulnyi, L. A. Bulavin, L. Almásy, V. M. Garamus, O. I. Ivankov, N. A. Grigoryeva, L. Vekas, P. Kopcansky, M. V. Avdeev, Colloids Surf. A 2018, 541, 222.
- 155R. Regmi, C. Black, C. Sudakar, P. H. Keyes, R. Naik, G. Lawes, P. Vaishnava, C. Rablau, D. Kahn, M. Lavoie, V. K. Garg, A. C. Oliveira, J. Appl. Phys. 2009, 106, 113902.
- 156E. Tombácz, D. Bica, A. Hajdú, E. Illés, A. Majzik, L. Vékás, J. Phys.: Condens. Matter 2008, 20, 204103.
- 157S. O. Giwa, M. Sharifpur, M. H. Ahmadi, S. M. Sohel Murshed, J. P. Meyer, Nanomaterials 2021, 11, 136.
- 158S. Odenbach, Colloids Surf. A 2003, 217, 171.
- 159M. V. Avdeev, B. Mucha, K. Lamszus, L. Vékás, V. M. Garamus, A. V. Feoktystov, O. Marinica, R. Turcu, R. Willumeit, Langmuir 2010, 26, 8503.
- 160S. M. Sohel Murshed, C. A. Nieto de Castro, Renewable Sustainable Energy Rev. 2017, 78, 821.
- 161L.-Y. Zhang, H.-C. Gu, X.-M. Wang, J. Magn. Magn. Mater. 2007, 311, 228.
- 162S. S. Sonawane, R. S. Khedkar, K. L. Wasewar, J. Exp. Nanosci. 2015, 10, 310.
- 163D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 2009, 7, 141.
- 164T. Yousefi, M. Heidari, A. Aloueyan, H. Shahinian, 6th International Conference on Thermal Engineering Theory and Applications, 2012.
- 165M. F. Casula, A. Corrias, P. Arosio, A. Lascialfari, T. Sen, P. Floris, I. j. Bruce, J. Colloid Interface Sci. 2011, 357, 50.
- 166H. Haiza, I. I. Yaacob, A. Z. A. Azhar, SSP 2018, 280, 36.
10.4028/www.scientific.net/SSP.280.36 Google Scholar
- 167J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R. Banerjee, D. Bahadur, J. Magn. Magn. Mater. 2008, 320, 724.
- 168I. Torres-Díaz, C. Rinaldi, Soft Matter 2014, 10, 8584.
- 169B. A. Finlayson, Phys. Fluids 2013, 25, 073101.
- 170A. Chaves, M. Zahn, C. Rinaldi, Phys. Fluids 2008, 20, 053102.
- 171R. Bandyopadhyay, W. H. Matthaeus, T. N. Parashar, Phys. Rev. E 2018, 97, 053211.
- 172M. I. Shliomis, V. I. Stepanov, J. Magn. Magn. Mater. 1993, 122, 196.
- 173W. F. Brown, Phys. Rev. 1963, 130, 1677.
- 174V. Cabuil, V. Dupuis, D. Talbot, S. Neveu, J. Magn. Magn. Mater. 2011, 323, 1238.
- 175S. A. Shah, D. B. Reeves, R. M. Ferguson, J. B. Weaver, K. M. Krishnan, Phys. Rev. B 2015, 92, 094438.
- 176H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Chem. Soc. Rev. 2021, 50, 11614.
- 177J. Landers, S. Salamon, H. Remmer, F. Ludwig, H. Wende, Nano Lett. 2016, 16, 1150.
- 178R. Kötitz, P. C. Fannin, L. Trahms, J. Magn. Magn. Mater. 1995, 149, 42.
- 179P. P. Vaishnava, R. Tackett, A. Dixit, C. Sudakar, R. Naik, G. Lawes, J. Appl. Phys. 2007, 102, 063914.
- 180G. Kandasamy, A. Sudame, P. Bhati, A. Chakrabarty, D. Maity, J. Mol. Liq. 2018, 256, 224.
- 181M. Jeun, Y. J. Kim, K. H. Park, S. H. Paek, S. Bae, J. Nanosci. Nanotech. 2013, 13, 5719.
- 182F. Wiekhorst, U. Steinhoff, D. Eberbeck, L. Trahms, Pharm. Res. 2012, 29, 1189.
- 183J. Jang, J. Lee, J. Seon, E. Ju, M. Kim, Y. I. l. Kim, M. G. Kim, Y. Takemura, A. Syed Arbab, K. W. Kang, K. H. Park, S. H. Paek, S. Bae, Adv. Mater. 2018, 30, 1704362.
- 184K. L. Livesey, S. Ruta, N. R. Anderson, D. Baldomir, R. W. Chantrell, D. Serantes, Sci. Rep. 2018, 8, 11166.
- 185J. Landers, L. Roeder, S. Salamon, A. M. Schmidt, H. Wende, J. Phys. Chem. C 2015, 119, 20642.
- 186A. Jaufenthaler, P. Schier, T. Middelmann, M. Liebl, F. Wiekhorst, D. Baumgarten, Sensors 2020, 20, 753.
- 187M. Liebl, F. Wiekhorst, D. Eberbeck, P. Radon, D. Gutkelch, D. Baumgarten, U. Steinhoff, L. Trahms, Biomedical Engineering /Biomedizinische Technik 2015, 60, 427.
- 188F. Fabris, E. Lima, Jr., E. De Biasi, H. E. Troiani, M. V. Mansilla, T. E. Torres, R. F. Pacheco, M. R. Ibarra, G. F. Goya, R. D. Zysler, E. L. Winkler, Nanoscale 2019, 11, 3164.
- 189J. Leliaert, D. Schmidt, O. Posth, M. Liebl, D. Eberbeck, A. Coene, U. Steinhoff, F. Wiekhorst, B. Van Waeyenberge, L. Dupré, J. Phys. D: Appl. Phys. 2017, 50, 195002.
- 190L. Nguyen, P. Phong, P. Nam, D. Manh, N. Thanh, L. Tung, N. Phuc, Materials 2021, 14, 1875.
- 191H. Adachi, J. Ohe, S. Takahashi, S. Maekawa, Phys. Rev. B 2011, 83, 094410.
- 192J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 2011, 109, 083921.
- 193P. T. Phong, L. H. Nguyen, L. T. H. Phong, P. H. Nam, D. H. Manh, I.-J. Lee, N. X. Phuc, J. Magn. Magn. Mater. 2017, 428, 36.
- 194Y.-D. Tang, J. Zou, R. C. C. Flesch, T. Jin, Int. Commun. Heat Mass Transfer 2022, 133, 105979.
- 195A. Manohar, V. Vijayakanth, S. V. P. Vattikuti, K. H. Kim, Mater. Chem. Phys. 2022, 286, 126117.
- 196J. Kim, J. Wang, H. Kim, S. Bae, Sci. Rep. 2021, 11, 733.
- 197E. M. Jefremovas, L. Gandarias, I. Rodrigo, L. Marcano, C. Grüttner, J. Á. García, E. Garayo, I. Orue, A. García-Prieto, A. Muela, M. L. Fernández-Gubieda, J. Alonso, L. Fernández Barquín, IEEE Access 2021, 9, 99552.
- 198B. Xiao, Y. Yang, L. Chen, Powder Technol. 2013, 239, 409.
- 199C. Haase, U. Nowak, Phys. Rev. B 2012, 85, 045435.
- 200N. Daffé, J. Zečević, K. N. Trohidou, M. Sikora, M. Rovezzi, C. Carvallo, M. Vasilakaki, S. Neveu, J. D. Meeldijk, N. Bouldi, V. Gavrilov, Y. Guyodo, F. Choueikani, V. Dupuis, D. Taverna, P. Sainctavit, A. Juhin, Nanoscale 2020, 12, 11222.
- 201A. Y. Toukmaji, J. A. Board, Comput. Phys. Commun. 1996, 95, 73.
- 202P. Ilg, M. Kröger, S. Hess, Phys. Rev. E 2005, 71, 031205.
- 203D. Zablotsky, S. Kralj, M. M. Maiorov, Colloids Surf. A 2020, 603, 125079.
- 204L. J. Felicia, J. Philip, Langmuir 2015, 31, 3343.
- 205A. O. Ivanov, P. J. Camp, Phys. Rev. E 2020, 102, 032610.
- 206P. J. Camp, A. O. Ivanov, J. O. Sindt, Phys. Rev. E 2021, 103, 062611.
- 207M. Taghizadeh, F. Bozorgzadeh, M. Ghorbani, Sci. Rep. 2021, 11, 14325.
- 208A. Cardellini, M. Fasano, M. B. Bigdeli, E. Chiavazzo, P. Asinari, J. Phys.: Condens. Matter 2016, 28, 483003.
- 209D.-X. Song, Y.-F. Zhang, W.-G. Ma, X. Zhang, J. Phys. D: Appl. Phys. 2019, 52, 485302.
- 210S. Vinod, J. Philip, J. Mol. Liq. 2018, 257, 1.
- 211D.-X. Song, W.-G. Ma, X. Zhang, Int. J. Heat Mass Transfer 2019, 138, 1228.
- 212A. Visintin, Phys. B 2000, 275, 87.
- 213J. M. Laskar, J. Philip, B. Raj, Phys. Rev. E 2010, 82, 021402.
- 214S. Mishra, M. K. Nayak, A. Misra, International Journal of Thermofluid Science and Technology 2020, 7, 070301.
- 215J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford 1873.
- 216R. L. Hamilton, O. K. Crosser, Ind. Eng. Chem. Fundamen. 1962, 1, 187.
- 217K. Ajith, A. S. Pillai, I. V. M. V. Enoch, A. B. Solomon, Colloids Surf. A 2021, 613, 126083.
- 218S. Doganay, R. Alsangur, A. Turgut, Mater. Res. Express 2019, 6, 112003.
- 219A. S. Dogonchi, S. M. Seyyedi, M. Hashemi-Tilehnoee, A. J. Chamkha, D. D. Ganji, Case Studies in Thermal Engineering 2019, 14, 100502.
- 220B. Wang, B. Wang, P. Wei, X. Wang, W. Lou, Dalton Trans. 2011, 41, 896.
- 221M. H. Ahmadi, A. Mirlohi, M. Alhuyi Nazari, R. Ghasempour, J. Mol. Liq. 2018, 265, 181.
- 222A. Vadakkepatt, B. Trembacki, S. R. Mathur, J. Y. Murthy, J. Electrochem. Soc. 2015, 163, A119.
- 223D. J. Jeffrey, G. K. Batchelor, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1997, 335, 355.
- 224Q. Z. Xue, Phys. B 2005, 368, 302.
- 225G. W. Milton, Appl. Phys. Lett. 1980, 37, 300.
- 226E. J. Wasp, J. P. Kenny, R. L. Gandhi, Ser. Bulk Mater. Handl. (United States) 1977, 1, 4,.
- 227J. Koo, C. Kleinstreuer, J. Nanopart Res. 2004, 6, 577.
- 228M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transfer 2016, 75, 262.
- 229D. Song, D. Jing, B. Luo, J. Geng, Y. Ren, J. Appl. Phys. 2015, 118, 045101.
- 230I. Nkurikiyimfura, Y. Wang, Z. Pan, Exp. Therm. Fluid Sci. 2013, 44, 607.
- 231B. N. Reinecke, J. W. Shan, K. K. Suabedissen, A. S. Cherkasova, J. Appl. Phys. 2008, 104, 023507.
- 232D. Song, D. Jing, J. Geng, Y. Ren, Powder Technol. 2015, 283, 561.
- 233A. Karimi, M. Goharkhah, M. Ashjaee, M. B. Shafii, Int. J. Thermophys. 2015, 36, 2720.
- 234S. Pil Jang, S. U. S. Choi, J. Heat Transfer 2006, 129, 617.
- 235M. Keshavarz Moraveji, M. Hejazian, Int. Commun. Heat Mass Transfer 2012, 39, 1293.
- 236X. F. Zhou, L. Gao, J. Appl. Phys. 2006, 100, 024913.
- 237M. Amani, Sci. Rep. 2017, 7, 17369.
- 238Ł. Baran, S. Sokołowski, Appl. Surf. Sci. 2017, 396, 1343.
- 239X. Wang, D. Jing, Chem. Phys. 2020, 539, 110943.
- 240M. S. Pattanaik, V. B. Varma, S. K. Cheekati, V. Chaudhary, R. V. Ramanujan, Sci. Rep. 2021, 11, 24167.
- 241K. S. Suganthi, K. S. Rajan, Int. J. Heat Mass Transfer 2012, 55, 7969.
- 242C. S. K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, Effects of Aligned Magneticfield and Radiation on the Flow of Ferrofluids over a Flat Plate with Non-Uniform Heat Source/Sink 2015, 8, 8.
- 243J. J. Healy, J. J. de Groot, J. Kestin, Physica B+C 1976, 82, 392.
10.1016/0378-4363(76)90203-5 Google Scholar
- 244A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, J. Meusel, J. Appl. Phys. 2002, 91, 4733.
- 245E. F. M. Van Der Held, F. G. Van Drunen, Physica 1949, 15, 865.
- 246T. Jeong, M. T. Moneck, J.-G. Zhu, IEEE Trans. Magn. 2012, 48, 3031.
- 247L. Shi, Y. Hu, Y. He, Appl. Therm. Eng. 2019, 162, 114220.
- 248P. J. Camp, E. A. Elfimova, A. O. Ivanov, J. Phys.: Condens. Matter 2014, 26, 456002.
- 249A. Karimi, S. S. S. Afghahi, H. Shariatmadar, M. Ashjaee, Thermochim. Acta 2014, 598, 59.
- 250A. Katiyar, P. Dhar, T. Nandi, S. K. Das, Exp. Therm. Fluid Sci. 2016, 78, 345.
- 251M. Abareshi, E. K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi, J. Magn. Magn. Mater. 2010, 322, 3895.
- 252R. Kirithiga, J. Hemalatha, J. Mol. Liq. 2020, 317, 113944.
- 253N. Sezer, M. A. Atieh, M. Koç, Powder Technol. 2019, 344, 404.
- 254Y. Zheng, A. Shahsavar, M. Afrand, Ultrason. Sonochem. 2020, 64, 105004.
- 255O. M. Bunoiu, G. Matu, C. N. Marin, I. Malaescu, J. Magn. Magn. Mater. 2020, 498, 166132.
- 256L. S. Sundar, M.d. H. Farooky, S. N. Sarada, M. K. Singh, Int. Commun. Heat Mass Transfer 2013, 41, 41.
- 257A. Banisharif, M. Aghajani, S. Van Vaerenbergh, P. Estellé, A. Rashidi, J. Mol. Liq. 2020, 302, 112606.
- 258J. Wang, M. Fan, X. Bian, M. Yu, T. Wang, S. Liu, Y. Yang, Y. Tian, R. Guan, J. Magn. Magn. Mater. 2018, 465, 480.
- 259F. Jiao, Q. Li, Y. Jiao, Y. He, J. Mol. Liq. 2021, 328, 115404.
- 260M. Arana, P. G. Bercoff, S. E. Jacobo, Mater. Sci. Eng., B 2017, 215, 1.
- 261L. Syam Sundar, M. K. Singh, A. C. M. Sousa, Int. Commun. Heat Mass Transfer 2013, 44, 7.