Crystalline Covalent Triazine Frameworks with Fibrous Morphology via a Low-Temperature Polycondensation of Planar Monomer
Jing Liu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorManying Liu
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000 China
Search for more papers by this authorXueqing Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorXiaoyan Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Bien Tan
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
E-mail: [email protected]
Search for more papers by this authorJing Liu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorManying Liu
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000 China
Search for more papers by this authorXueqing Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorXiaoyan Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Bien Tan
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The morphology regulation of covalent triazine frameworks (CTFs) is a great challenge, which may be due to the difficulty in controlling its morphology by traditional synthesis methods. Herein, a general approach to fabricate morphology controllable CTFs by a mild polycondensation reaction in mixed solvents without any templating agents is reported. As a proof of concept, a type of crystalline CTFs with distinctive fibrous morphology (MS-F-CTF-1) (MS: Mixed Solvent; F: Fibrous Morphology) is developed by adjusting the ratio of mixed solvents to control the solubility of monomers, so that the nucleation, crystal growth, and subsequent self-assembly are controlled, which facilitates the formation of fibrous morphology. The resultant crystalline MS-F-CTF-1 shows uniform fibrous morphology with a diameter of about 100 nm and a length of several micrometers. Notably, the fibrous morphology of CTFs can efficiently improve the photocatalytic hydrogen evolution performance, in which the hydrogen evolution rate can be boosted by about two times in comparison to block ones.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202200984-sup-0001-SuppMat.pdf8.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem., Int. Ed. 2008, 47, 3450.
- 2K. Wang, L. Yang, X. Wang, L. Guo, G. Cheng, C. Zhang, S. Jin, B. Tan, A. Cooper, Angew. Chem., Int. Ed. 2017, 56, 14149.
- 3K. Geng, T. He, R. Liu, K. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814.
- 4T. Banerjee, F. Podjaski, J. Kröger, B. Biswal, B. Lotsch, Nat. Rev. Mater. 2021, 6, 168.
- 5X. Zhu, C. Tian, S. Mahurin, S. Chai, C. Wang, S. Brown, G. Veith, H. Luo, H. Liu, S. Dai, J. Am. Chem. Soc. 2012, 134, 10478.
- 6Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 2020, 49, 708.
- 7Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. Wu, X. Bao, W. Deng, Angew. Chem., Int. Ed. 2018, 57, 7992.
- 8Y. Wang, A. Vogel, M. Sachs, R. Sprick, L. Wilbraham, S. Moniz, R. Godin, M. Zwijnenburg, J. Durrant, A. Cooper, J. Tang, Nat. Energy 2019, 4, 746.
- 9L. Zhang, Y. Zhang, X. Huang, L. Tao, Y. Bi, Appl. Catal., B Environ. 2021, 283, 119633.
- 10D. Kong, X. Han, J. Xie, Q. Ruan, C. Windle, S. Gadipelli, K. Shen, Z. Bai, Z. Guo, J. Tang, ACS Catal. 2019, 9, 7697.
- 11H. Jena, C. Krishnaraj, G. Wang, K. Leus, J. Schmidt, N. Chaoui, Chem. Mater. 2018, 30, 4102.
- 12M. Liu, Q. Huang, S. Wang, Z. Li, B. Li, S. Jin, B. Tan, Angew. Chem., Int. Ed. 2018, 57, 11968.
- 13M. Liu, K. Jiang, X. Ding, S. Wang, C. Zhang, J. Liu, Z. Zhan, G. Cheng, B. Li, H. Chen, S. Jin, B. Tan, Adv. Mater. 2019, 31, 1807865.
- 14Y. Li, Q. Chen, T. Xu, Z. Xie, J. Liu, X. Yu, S. Ma, T. Qin, L. Chen, J. Am. Chem. Soc. 2019, 141, 13822.
- 15L. Guo, X. Wang, Z. Zhan, Y. Zhao, L. Chen, T. Liu, B. Tan, S. Jin, Chem. Mater. 2021, 33, 1994.
- 16L. Guo, Y. Niu, H. Xu, Q. Li, S. Razzaque, Q. Huang, S. Jin, B. Tan, J. Mater. Chem. A 2018, 6, 19775.
- 17L. Guo, Y. Niu, S. Razzaque, B. Tan, S. Jin, ACS Catal. 2019, 9, 9438.
- 18W. Huang, Q. He, Y. Hu, Y. Li, Angew. Chem., Int. Ed. 2019, 58, 8676.
- 19L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, A. T. J. Yang, L. Zhi, J. Am. Chem. Soc. 2015, 137, 219.
- 20W. Huang, B. Ma, H. Lu, R. Li, L. Wang, K. Landfester, K. Zhang, ACS Catal. 2017, 7, 5438.
- 21L. Guan, G. Cheng, B. Tan, S. Jin, Chem. Commun. 2021, 57, 5147.
- 22M. Liu, L. Guo, S. Jin, B. Tan, J. Mater. Chem. A 2019, 7, 5153.
- 23J. Liu, W. Zan, K. Li, Y. Yang, F. Bu, Y. Xu, J. Am. Chem. Soc. 2017, 139, 11666.
- 24Z. Tan, P. Zhang, Q. Chen, S. Fang, G. Huang, J. Bi, L. Wu, Catal. Sci. Technol. 2021, 11, 1874.
- 25W. Huang, Z. Wang, B. Ma, S. Ghasimi, D. Gehrig, F. Laquai, K. Landfestera, K. Zhang, J. Mater. Chem. A 2016, 4, 7555.
- 26N. Wang, G. Cheng, L. Guo, B. Tan, S. Jin, Adv. Funct. Mater. 2019, 29, 1904781.
- 27X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 2020, 49, 301.
- 28J. Xu, Y. He, S. Bi, M. Wang, P. Yang, Q. Wu, J. Wang, F. Zhang, Angew. Chem., Int. Ed. 2019, 58, 12065.
- 29M. Mahdy, C. Young, J. Kim, J. You, Y. Yamauchi, S. Kuo, ACS Appl. Mater. Interfaces 2019, 11, 9343.
- 30W. Huang, N. Huber, S. Jiang, K. Landfester, K. Zhang, Angew. Chem., Int. Ed. 2020, 59, 18368.
- 31T. Ma, L. Wei, L. Liang, S. Yin, L. Xu, J. Niu, H. Xue, X. Wang, J. Sun, Y. Zhang, W. Wang, Nat. Commun. 2020, 11, 6128.
- 32D. Samanta, M. Kumar, S. Singh, P. Verma, K. Kar, T. Maji, M. Ghorai, J. Mater. Chem. A 2020, 8, 21968.
- 33A. Halder, S. Kandambeth, B. P. Biswal, G. Kaur, N. C. Roy, M. Addicoat, J. K. Salunke, K. V. S. Banerjee, T. Heine, S. Verma, R. Banerjee, Angew. Chem., Int. Ed. 2016, 55, 7806.
- 34Z. Xu, Y. Cui, B. Guo, H. Li, H. Li, ChemCatChem 2021, 13, 958.
- 35Y. Fu, Z. Wang, X. Fu, J. Yan, C. Liu, C. Pan, G. Yu, J. Mater. Chem. A 2017, 5, 21266.
- 36J. Xie, S. Shevlin, Q. Ruan, S. Moniz, Y. Liu, X. Liu, Y. Li, C. Lau, Z. Guo, J. Tang, Energy Environ. Sci. 2018, 11, 1617.
- 37L. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu, H. Xu, Adv. Mater. 2020, 32, 1904433.
- 38Y. Zhao, W. Ma, Y. Xu, C. Zhang, Q. Wang, T. Yang, X. Gao, F. Wang, C. Yan, J. Jiang, Macromolecules 2018, 51, 95029508.
- 39X. Gao, C. Shu, C. Zhang, W. Ma, S. Ren, F. Wang, Y. Chen, J. Zeng, J. Jiang, J. Mater. Chem. A 2020, 8, 2404.
- 40X. Wang, L. Chen, S. Chong, M. Little, Y. Wu, W. Zhu, R. Clowes, Y. Yan, M. Zwijnenburg, R. Sprick, A. Cooper, Nat. Chem. 2018, 10, 1180.
- 41S. Wang, B. Guan, X. Wang, X. Lou, J. Am. Chem. Soc. 2018, 140, 15145.
- 42Z. Lan, G. Zhang, X. Chen, Y. Zhang, K. Zhang, X. Wang, Angew. Chem., Int. Ed. 2019, 58, 10236.
- 43Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai, Y. Zhou, Angew. Chem., Int. Ed. 2019, 58, 10198.