Building 2D/2D CdS/MOLs Heterojunctions for Efficient Photocatalytic Hydrogen Evolution
Wei Yang
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorMeng Xu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKe-Ying Tao
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorJi-Hong Zhang
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Di-Chang Zhong
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tong-Bu Lu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWei Yang
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorMeng Xu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKe-Ying Tao
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorJi-Hong Zhang
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Di-Chang Zhong
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tong-Bu Lu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost-efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni-based metal–organic layers (Ni-MOLs) are closely grown on 2D porous CdS (P-CdS) nanosheets, affording traditional P-CdS/Ni-MOL heterojunction materials. Impressively, the optimized P-CdS/Ni-MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g−1 h−1. This value is 7 and 2981 times higher than that of P-CdS and Ni-MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P-CdS and Ni-MOLs, which facilitates the fast charge carriers’ separation and transfer. This work provides a strategy to develop 2D MOL-based photocatalysts for sustainable energy conversion.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
smll202200332-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 2W. E. Winsche, K. C. Hoffman, F. J. Salzano, Science 1973, 180, 1325.
- 3J.-W. Wang, W.-J. Liu, D.-C. Zhong, T.-B. Lu, Coord. Chem. Rev. 2019, 378, 237.
- 4T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 2016, 1, 16059.
- 5Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, Nat. Energy 2016, 1, 16130.
- 6J.-H. Deng, J. Luo, Y.-L. Mao, S. Lai, Y.-N. Gong, D.-C. Zhong, T.-B. Lu, Sci. Adv. 2020, 6, eaax9976.
- 7N. Savage, K. Bourzac, Nature 2017, 545, S13.
- 8L.-M. Cao, D. Lu, D.-C. Zhong, T.-B. Lu, Coord. Chem. Rev. 2020, 407, 213156.
- 9D.-C. Liu, D.-C. Zhong, T.-B. Lu, EnergyChem 2020, 2, 100034.
- 10J. Kosco, M. Bidwell, H. Cha, T. Martin, C. T. Howells, M. Sachs, D. H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, W. Zhang, L. Zhang, J. Tellam, R. Sougrat, F. Laquai, D. M. DeLongchamp, J. R. Durrant, I. McCulloch, Nat. Mater. 2020, 19, 559.
- 11Y.-N. Gong, B.-Z. Shao, J.-H. Mei, W. Yang, D.-C. Zhong, T.-B. Lu, Nano Res. 2022, 15, 551.
- 12T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.
- 13Z. Zhang, C. R. Rogers, E. A. Weiss, J. Am. Chem. Soc. 2020, 142, 495.
- 14J.-X. Lv, Z.-M. Zhang, J. Wang, X.-L. Lu, W. Zhang, T.-B. Lu, ACS Appl. Mater. Interfaces 2019, 11, 2655.
- 15T. Wang, Y. Chai, D. Ma, W. Chen, W. Zheng, S. Huang, Nano Res. 2017, 10, 2699.
- 16C. Zhu, C. A. Liu, Y. Fu, J. Gao, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B 2019, 242, 178.
- 17Q. Li, X. Li, S. Wageh, A. A. Al-Ghamdi, J. Yu, Adv. Energy Mater. 2015, 5, 1500010.
- 18M. Zhang, Q. Hu, K. Ma, Y. Ding, C. Li, Nano Energy 2020, 73, 104810.
- 19C. Bie, J. Fu, B. Cheng, L. Zhang, Appl. Surf. Sci. 2018, 462, 606.
- 20P. Zhang, D. Luan, X. W. Lou, Adv. Mater. 2020, 32, 2004561.
- 21Q. Gong, X. Qian, P. Zhou, X. Yu, W. Du, S. Xu, J. Phys. Chem. C 2007, 111, 1935.
- 22N. Zhang, Y. Zhang, X. Pan, X. Fu, S. Liu, Y.-J. Xu, J. Phys. Chem. C 2011, 115, 23501.
- 23X. Hao, Z. Cui, J. Zhou, Y. Wang, Y. Hu, Y. Wang, Z. Zou, Nano Energy 2018, 52, 105.
- 24Y. Yu, J. Zhang, X. Wu, W. Zhao, B. Zhang, Angew. Chem. 2012, 124, 921; Angew. Chem., Int. Ed. 2012, 51, 897.
- 25D. P. Kumar, J. Choi, S. Hong, D. A. Reddy, S. Lee, T. K. Kim, ACS Sustainable Chem. Eng. 2016, 4, 7158.
- 26R. Huang, W. Chen, Y. Zhang, Z. Huang, Y. Zhou, Y. Wu, X. Lv, J. Colloid Interface Sci. 2019, 554, 39.
- 27H.-Q. Xu, S. Yang, X. Ma, J. Huang, H.-L. Jiang, ACS Catal. 2018, 8, 11615.
- 28Y.-N. Gong, J.-H. Mei, J.-W. Liu, H.-H. Huang, J.-H. Zhang, X. Li, D.-C. Zhong, T.-B. Lu, Appl. Catal. B 2021, 292, 120156.
- 29D.-C. Liu, T. Ouyang, R. Xiao, W.-J. Liu, D.-C. Zhong, Z. Xu, T.-B. Lu, ChemSusChem. 2019, 12, 2166.
- 30J.-W. Yoon, J.-H. Kim, C. Kim, H. W. Jang, J.-H. Lee, Adv. Energy Mater. 2021, 11, 2003052.
- 31L. J. Small, S. E. Henkelis, D. X. Rademacher, M. E. Schindelholz, J. L. Krumhansl, D. J. Vogel, T. M. Nenoff, Adv. Funct. Mater. 2020, 30, 2006598.
- 32X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, EnergyChem 2020, 2, 100027.
- 33M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 6267.
- 34G. Lan, Z. Li, S. S. Veroneau, Y.-Y. Zhu, Z. Xu, C. Wang, W. Lin, J. Am. Chem. Soc. 2018, 140, 12369.
- 35W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115.
- 36W. Yang, H.-J. Wang, R.-R. Liu, J.-W. Wang, C. Zhang, C. Li, D.-C. Zhong, T.-B. Lu, Angew. Chem. 2021, 133, 413; Angew. Chem., Int. Ed. 2021, 60, 409.
10.1002/ange.202011068 Google Scholar
- 37J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang, S. Chen, L. Song, X. Zhang, L. Jing, R. Zheng, S.-Z. Qiao, Adv. Energy Mater. 2019, 9, 1803402.
- 38J. Duan, Y. Li, Y. Pan, N. Behera, W. Jin, Coord. Chem. Rev. 2019, 395, 25.
- 39Y. Song, Y. Pi, X. Feng, K. Ni, Z. Xu, J. S. Chen, Z. Li, W. Lin, J. Am. Chem. Soc. 2020, 142, 6866.
- 40K. Niu, Y. Xu, H. Wang, R. Ye, H. L. Xin, F. Lin, C. Tian, Y. Lum, K. C. Bustillo, M. M. Doeff, M. T. M. Koper, J. Ager, R. Xu, H. Zheng, Sci. Adv. 2017, 3, e1700921.
- 41B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y.-J. Xu, Z. Lin, Angew. Chem. 2018, 130, 17053; Angew. Chem., Int. Ed. 2018, 57, 16811.
10.1002/ange.201811545 Google Scholar
- 42Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan, C. Xu, Appl. Catal. B 2016, 185, 307.
- 43D. Ding, Z. Jiang, J. Jin, J. Li, D. Ji, Y. Zhang, L. Zan, J. Catal. 2019, 375, 21.
- 44P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 2021, 421, 129870.
- 45Y. Su, Z. Zhang, H. Liu, Y. Wang, Appl. Catal. B 2017, 200, 448.
- 46S. Mao, Y. Zou, G. Sun, L. Zeng, Z. Wang, D. Ma, Y. Guo, Y. Cheng, C. Wang, J.-W. Shi, J. Colloid Interface Sci. 2021, 581, 1.
- 47T. Ma, F. Zhou, T.-W. Zhang, H.-B. Yao, T.-Y. Su, Z.-L. Yu, Y. Li, L.-L. Lu, S.-H. Yu, Angew. Chem. 2017, 129, 11998; Angew. Chem., Int. Ed.2017, 56, 11836.
10.1002/ange.201706199 Google Scholar
- 48F.-L. Li, P. T. Wang, X. Q. Huang, D. J. Young, H.-F. Wang, P. Braunstein, J.-P. Lang, Angew. Chem. 2019, 131, 7125; Angew. Chem., Int. Ed.2019, 58, 7051.
10.1002/ange.201902588 Google Scholar
- 49K. Zhang, M. Fujitsuka, Y. Du, T. Majima, ACS Appl. Mater. Interfaces 2018, 10, 20458.
- 50J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Appl. Catal. B 2014, 156-157, 184.