A Facile Approach for Elemental-Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors
Corresponding Author
Lingfeng Gao
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLude Wang
School of Artificial Intelligence and Information Technology, Nanjing University of Traditional Chinese Medicine, No. 138 Xianling Rd., Nanjing, 210023 China
Search for more papers by this authorArtem V. Kuklin
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20 Sweden
Search for more papers by this authorJie Gao
Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorShouchun Yin
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121 China
Search for more papers by this authorCorresponding Author
Hans Ågren
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20 Sweden
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Han Zhang
College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Lingfeng Gao
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLude Wang
School of Artificial Intelligence and Information Technology, Nanjing University of Traditional Chinese Medicine, No. 138 Xianling Rd., Nanjing, 210023 China
Search for more papers by this authorArtem V. Kuklin
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20 Sweden
Search for more papers by this authorJie Gao
Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorShouchun Yin
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121 China
Search for more papers by this authorCorresponding Author
Hans Ågren
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20 Sweden
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Han Zhang
College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
The present work demonstrates a facile hydrothermal approach to synthesize lanthanide-doped carbon quantum dots (CQDs) with europium and/or gadolinium elements. Taking the advantage of broadband adsorption in the ultraviolet-visible region, the doped QDs are directly used as building blocks for photo-electrochemical (PEC)-type photodetectors (PDs) and their performance is systematically investigated under various conditions. The europium (Eu) and gadolinium (Gd) co-doped (C:EuGd) QDs exhibit better photo-response than the single-elemental doped ones and also show outstanding long-term stability. According to the apparent response to light from 350 to 400 nm, the C:EuGd QDs are demonstrated to hold great potential for narrow-band PDs. This work highlights the practical applications of lanthanide-doped CQDs for PDs, and the results are beneficial for the development of elemental-doped CQDs in general.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105683-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran, A. K. Budniak, F. Horani, J. Dehnel, A. Sashchiuk, E. Lifshitz, Chem. Commun. 2017, 53, 1002.
- 2B. Fang, D. Chang, Z. Xu, C. Gao, Adv. Mater. 2020, 32, 1902664.
- 3G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256.
- 4A. Zieleniewska, F. Lodermeyer, A. Roth, D. Guldi, Chem. Soc. Rev. 2018, 47, 702.
- 5Y. R. Poudel, W. Li, Mater. Today Phys. 2018, 7, 7.
- 6S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 2015, 44, 362.
- 7H. Yu, J. Huang, L. Jiang, Y. Shi, K. Yi, W. Zhang, J. Zhang, H. Chen, X. Yuan, Chem. Eng. J. 2020, 402, 126187.
- 8K. Nekoueian, M. Amiri, M. Sillanpää, F. Marken, R. Boukherroub, S. Szunerits, Chem. Soc. Rev. 2019, 48, 4281.
- 9Y. Jin, C. Hu, Q. Dai, Y. Xiao, Y. Lin, J. W. Connell, F. Chen, L. Dai, Adv. Funct. Mater. 2018, 28, 1804630.
- 10M. Li, T. Chen, J. J. Gooding, J. Liu, ACS Sens. 2019, 4, 1732.
- 11X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736.
- 12a) L. Lin, Y. Luo, P. Tsai, J. Wang, X. Chen, TrAC, Trends Anal. Chem. 2018, 103, 87; b) S. Yang, J. Sun, X. Li, W. Zhou, Z. Wang, P. He, G. Ding, X. Xie, Z. Kang, M. Jiang, J. Mater. Chem. A 2014, 2, 8660; c) Y. Wang, A. Hu, J. Mater. Chem. C 2014, 2, 6921.
- 13F. Li, T. Li, C. Sun, J. Xia, Y. Jiao, H. Xu, Angew. Chem., Int. Ed. 2017, 56, 9910.
- 14a) W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, Chem. Eng. J. 2019, 378, 122132; b) J. Li, X. Yun, Z. Hu, L. Xi, N. Li, H. Tang, P. Lu, Y. Zhu, J. Mater. Chem. A 2019, 7, 26311; c) Y. Wang, L. Yan, G. Ji, C. Wang, H. Gu, Q. Luo, Q. Chen, L. Chen, Y. Yang, C.-Q. Ma, ACS Appl. Mater. Interfaces 2018, 11, 2243; d) Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge, G. Zou, Y. Liu, H. Hou, X. Ji, Nano Micro Lett. 2020, 12, 16.
- 15T. L. Chan, M. L. Tiago, E. Kaxiras, J. R. Chelikowsky, Nano Lett. 2008, 8, 596.
- 16P. Wu, Y. He, H.-F. Wang, X.-P. Yan, Anal. Chem. 2010, 82, 1427.
- 17X. Shi, S. Chen, M.-Y. Luo, B. Huang, G. Zhang, R. Cui, M. Zhang, Nano Res. 2020, 13, 2239.
- 18a) Y. Park, J. Yoo, B. Lim, W. Kwon, S. W. Rhee, J. Mater. Chem. A 2016, 4, 11582; b) F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, S. Yang, Nano Today 2016, 11, 565.
- 19a) F. Wu, M. Yang, H. Zhang, S. Zhu, X. Zhu, K. Wang, Opt. Mater. 2018, 77, 258; b) N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón, T. J. Bandosz, Carbon 2018, 135, 104; c) C. Lu, Q. Zhu, X. Zhang, H. Ji, Y. Zhou, H. Wang, Q. Liu, J. Nie, W. Han, X. Li, ACS Sustainable Chem. Eng. 2019, 7, 8542.
- 20Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, Nat. Chem. 2020, 12, 764.
- 21a) L. Wang, M. Liu, Y. Chen, J. Biomed. Nanotechnol. 2018, 14, 1898; b) L. Wang, Y. Chen, Microchim. Acta 2018, 185, 489.
- 22X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, Analyst 2014, 139, 2322.
- 23K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem., Int. Ed. 2018, 57, 6216.
- 24Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Li, J. Zhao, J. Zhong, H. Zhang, Adv. Funct. Mater. 2018, 28, 1705237.
- 25a) Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang, Y. Tang, L. Hu, P. Huang, X. Zhang, H. Zhang, Small 2019, 15, 1903233; b) L. Gao, R. Wang, A. V. Kuklin, H. Zhang, H. Ågren, Adv. Funct. Mater. 2021, 31, 2010401; c) L. Gao, H. Chen, R. Wang, S. Wei, A. V. Kuklin, S. Mei, F. Zhang, Y. Zhang, X. Jiang, Z. Luo, S. Xu, H. Zhang, H. Agren, Small 2021, 17, 2005913; d) L. Gao, C. Ma, S. Wei, A. V. Kuklin, H. Zhang, H. Agren, ACS Nano 2021, 15, 954.
- 26R. H. Bube, Photoelectronic properties of semiconductors, Cambridge University Press, Canbridge, UK 1992.