Ion-Conductive Hydrogel-Based Stretchable, Self-Healing, and Transparent NO2 Sensor with High Sensitivity and Selectivity at Room Temperature
Zixuan Wu
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLimin Rong
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorJinglan Yang
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorYaoming Wei
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorKai Tao
The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorYubin Zhou
School of Pharmacy, Guangdong Medical University, Dongguan, 523808 P.R. China
Search for more papers by this authorBo-Ru Yang
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorXi Xie
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Jin Wu
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
E-mail: [email protected]
Search for more papers by this authorZixuan Wu
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLimin Rong
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorJinglan Yang
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorYaoming Wei
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorKai Tao
The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072 P.R. China
Search for more papers by this authorYubin Zhou
School of Pharmacy, Guangdong Medical University, Dongguan, 523808 P.R. China
Search for more papers by this authorBo-Ru Yang
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorXi Xie
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Jin Wu
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Here stretchable, self-healable, and transparent gas sensors based on salt-infiltrated hydrogels for high-performance NO2 sensing in both anaerobic environment and air at room temperature, are reported. The salt-infiltrated hydrogel displays high sensitivity to NO2 (119.9%/ppm), short response and recovery time (29.8 and 41.0 s, respectively), good linearity, low theoretical limit of detection (LOD) of 86 ppt, high selectivity, stability, and conductivity. A new gas sensing mechanism based on redox reactions occurring at the electrode–hydrogel interface is proposed to understand the sensing behaviors. The gas sensing performance of hydrogel is greatly improved by incorporating calcium chloride (CaCl2) in the hydrogel via a facile salt-infiltration strategy, leading to a higher sensitivity (2.32 times) and much lower LOD (0.06 times). Notably, both the gas sensing ability, conductivity, and mechanical deformability of hydrogels are readily self-healable after cutting off and reconnection. Such large deformations as 100% strain do not deprive the gas sensing capability, but rather shorten the response and recovery time significantly. The CaCl2-infiltrated hydrogel shows excellent selectivity of NO2, with good immunity to the interference gases. These results indicate that the salt-infiltrated hydrogel has great potential for wearable electronics equipped with gas sensing capability in both anaerobic and aerobic environments.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104997-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Adv. Mater. 2020, 32, 1902434.
- 2L. Guo, T. Wang, Z. Wu, J. Wang, M. Wang, Z. Cui, S. Ji, J. Cai, C. Xu, X. Chen, Adv. Mater. 2020, 32, 2004805.
- 3Z. Wu, X. Yang, J. Wu, ACS Appl. Mater. Interfaces 2021, 13, 2128.
- 4K. Xu, Y. Lu, K. Takei, Adv. Mater. Technol. 2019, 4, 1800628.
- 5Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui, W. Shi, X. Xie, J. Wu, ACS Appl. Mater. Interfaces 2021, 13, 21854.
- 6S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin, H. Wang, M. Zhang, X. Liang, H. Lu, M. Zhu, H. Wang, X. Shen, Y. Zhang, InfoMat 2020, 2, 184.
- 7M. Zhang, R. Guo, K. Chen, Y. Wang, J. Niu, Y. Guo, Y. Zhang, Z. Yin, K. Xia, B. Zhou, H. Wang, W. He, J. Liu, M. Sitti, Y. Zhang, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 14667.
- 8M. Zhang, Y. Wang, M. Jian, C. Wang, X. Liang, J. Niu, Y. Zhang, Adv. Sci. 2020, 7, 1903048.
- 9B. Cheng, P. Wu, ACS Nano 2021, 15, 8676.
- 10K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen, J. Wu, L. Tang, K. Fan, Y. Fu, J. Miao, W. Yuan, Nano-Micro Lett. 2021, 13, 123.
- 11Y. Yang, Z. D. Deng, Appl. Phys. Rev. 2019, 6, 011309.
- 12J. Lee, S. J. Ihle, G. S. Pellegrino, H. Kim, J. Yea, C.-Y. Jeon, H.-C. Son, C. Jin, D. Eberli, F. Schmid, B. L. Zambrano, A. F. Renz, C. Forró, H. Choi, K.-I. Jang, R. Küng, J. Vörös, Nat. Electron. 2021, 4, 291.
- 13L. Tian, B. Zimmerman, A. Akhtar, K. J. Yu, M. Moore, J. Wu, R. J. Larsen, J. W. Lee, J. Li, Y. Liu, B. Metzger, S. Qu, X. Guo, K. E. Mathewson, J. A. Fan, J. Cornman, M. Fatina, Z. Xie, Y. Ma, J. Zhang, Y. Zhang, F. Dolcos, M. Fabiani, G. Gratton, T. Bretl, L. J. Hargrove, P. V. Braun, Y. Huang, J. A. Rogers, Nat. Biomed. Eng. 2019, 3, 194.
- 14X. Wu, H. Liao, D. Ma, M. Chao, Y. Wang, X. Jia, P. Wan, L. Zhang, J. Mater. Chem. C 2020, 8, 1788.
- 15H. Liao, X. Guo, P. Wan, G. Yu, Adv. Funct. Mater. 2019, 29, 1904507.
- 16Y. Wang, S. Sun, P. Wu, Adv. Funct. Mater. 2021, 31, 2101494.
- 17T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, H.-J. Chung, ACS Appl. Mater. Interfaces 2017, 9, 33100.
- 18J. Tian, H. Peng, X. Du, H. Wang, X. Cheng, Z. Du, J. Alloys Compd. 2021, 858, 157725.
- 19T. Jiang, X. Zhao, X. Yin, R. Yang, G. Tan, Appl. Energy 2021, 287, 116573.
- 20W. H. O - Ambient (outdoor) air pollution, https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed: Apr 2021).
- 21X. Zheng, H. Cheng, Sci. China: Technol. Sci. 2019, 62, 209.
- 22J. Yun, Y. Lim, G. N. Jang, D. Kim, S.-J. Lee, H. Park, S. Y. Hong, G. Lee, G. Zi, J. S. Ha, Nano Energy 2016, 19, 401.
- 23S. Geravandi, G. Goudarzi, M. J. Mohammadi, S. S. Taghavirad, S. Salmanzadeh, Health Scope 2015, 4, e24318.
10.17795/jhealthscope-24318 Google Scholar
- 24X. Zhang, Y. Liu, H. Liu, T. Liang, P. Zhang, Z. Dai, Sens. Actuators, B 2021, 345, 130357.
- 25J. Zhou, K. Xue, Y. Liu, T. Liang, P. Zhang, X. Zhang, W. Zhang, Z. Dai, Chem. Eng. J. 2021, 420, 127572.
- 26P. Zhang, G. Dong, B. Sun, L. Zhang, X. Chen, N. Ma, F. Yu, H. Guo, H. Huang, Y. L. Lee, N. Tang, J. Chen, PLoS One 2011, 6, e20827.
- 27N. D. Hoa, S. A. El-Safty, Chem. – Eur. J. 2011, 17, 12896.
- 28T.-Y. Su, Y.-Z. Chen, Y.-C. Wang, S.-Y. Tang, Y.-C. Shih, F. Cheng, Z. M. Wang, H.-N. Lin, Y.-L. Chueh, J. Mater. Chem. C 2020, 8, 4851.
- 29Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng, C. Yang, N. Pinna, J. Zhang, Mater. Horiz. 2020, 7, 1519.
- 30J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang, Z. Li, W. Huang, X. Xie, K. Tao, X. Wang, ACS Appl. Mater. Interfaces 2020, 12, 20623.
- 31Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang, T. Wang, ACS Appl. Mater. Interfaces 2016, 8, 9674.
- 32X. Liu, T. Ma, N. Pinna, J. Zhang, Adv. Funct. Mater. 2017, 27, 1702168.
- 33P. T. Moseley, Meas. Sci. Technol. 2017, 28, 082001.
- 34N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, L. Lin, Microchim. Acta 2018, 185, 213.
- 35D.-B. Moon, A. Bag, H.-B. Lee, M. Meeseepong, D.-H. Lee, N.-E. Lee, Sens. Actuators, B 2021, 345, 130373.
- 36H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T. J. Ha, A. Javey, Nat. Commun. 2014, 5, 5032.
- 37M. A. Islam, H. Li, S. Moon, S. S. Han, H.-S. Chung, J. Ma, C. Yoo, T.-J. Ko, K. H. Oh, Y. Jung, Y. Jung, ACS Appl. Mater. Interfaces 2020, 12, 53174.
- 38W. Li, R. Chen, W. Qi, L. Cai, Y. Sun, M. Sun, C. Li, X. Yang, L. Xiang, D. Xie, T. Ren, ACS Sens. 2019, 4, 2809.
- 39M. L. Jin, S. Park, H. Kweon, H. J. Koh, M. Gao, C. Tang, S. Y. Cho, Y. Kim, S. Zhang, X. Li, K. Shin, A. Fu, H. T. Jung, C. W. Ahn, D. H. Kim, Adv. Mater. 2021, 33, 2007605.
- 40H. Yuk, B. Y. Lu, X. H. Zhao, Chem. Soc. Rev. 2019, 48, 1642.
- 41Z. Wang, Y. Cong, J. Fu, J. Mater. Chem. B 2020, 8, 3437.
- 42B. Guo, Z. Ma, L. Pan, Y. Shi, J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1606.
- 43C. H. Yang, Z. G. Suo, Nat. Rev. Mater. 2018, 3, 125.
- 44H. Huang, L. Han, J. Li, X. Fu, Y. Wang, Z. Yang, X. Xu, L. Pan, M. Xu, J. Mater. Chem. A 2020, 8, 10291.
- 45Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang, Y. Zhou, X. Gui, X. Xie, J. Wu, J. Mater. Chem. C 2021, 9, 13668.
- 46J. Wu, Z. Wu, W. Huang, X. Yang, Y. Liang, K. Tao, B.-R. Yang, W. Shi, X. Xie, ACS Appl. Mater. Interfaces 2020, 12, 52070.
- 47J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui, K. Tao, C. Liu, J. Miao, L. K. Norford, ACS Appl. Mater. Interfaces 2019, 11, 2364.
- 48L. Liu, T. Fei, X. Guan, X. Lin, H. Zhao, T. Zhang, Sens. Actuators, B 2020, 320, 128318.
- 49H. Zhi, J. Gao, L. Feng, ACS Sens. 2020, 5, 772.
- 50D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo, Y. Xia, S. Sun, S. Guo, Angew. Chem., Int. Ed. 2016, 55, 15925.
- 51N. Yi, Z. Cheng, H. Li, L. Yang, J. Zhu, X. Zheng, Y. Chen, Z. Liu, H. Zhu, H. Cheng, Mater. Today Phys. 2020, 15, 100265.
- 52G. Namgung, Q. T. H. Ta, W. Yang, J.-S. Noh, ACS Appl. Mater. Interfaces 2019, 11, 1411.
- 53Y.-F. Zhao, H.-R. Fuh, C. Ó. Coileáin, C. P. Cullen, T. Stimpel-Lindner, G. S. Duesberg, Ó. Leonardo Camargo Moreira, D. Zhang, J. Cho, M. Choi, B. S. Chun, C.-R. Chang, H.-C. Wu, Adv. Mater. Technol. 2020, 5, 1901085.
- 54D. Kim, D. Kim, H. Lee, Y. R. Jeong, S.-J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, J. Kim, J. S. Ha, Adv. Mater. 2016, 28, 748.
- 55A. Hanif, A. Bag, A. Zabeeb, D. B. Moon, S. Kumar, S. Shrivastava, N. E. Lee, Adv. Funct. Mater. 2020, 30, 2003540.
- 56Z. Song, Z. Huang, J. Liu, Z. Hu, J. Zhang, G. Zhang, F. Yi, S. Jiang, J. Lian, J. Yan, J. Zang, H. Liu, ACS Sens. 2018, 3, 1048.
- 57L. Liu, T. Fei, X. Guan, H. Zhao, T. Zhang, Biosens. Bioelectron. 2021, 191, 113459.
- 58J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.