Ultrafast Na Transport into Crystalline Sn via Dislocation-Pipe Diffusion
Jae-Hwan Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorYoung-Hwan Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorJun-Hyoung Park
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorByeong-Joo Lee
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673 South Korea
Search for more papers by this authorYoung-Woon Byeon
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorCorresponding Author
Jae-Chul Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
E-mail: [email protected]
Search for more papers by this authorJae-Hwan Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorYoung-Hwan Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorJun-Hyoung Park
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorByeong-Joo Lee
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673 South Korea
Search for more papers by this authorYoung-Woon Byeon
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorCorresponding Author
Jae-Chul Lee
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
The charging process of secondary batteries is always associated with a large volume expansion of the alloying anodes, which in many cases, develops high compressive residual stresses near the propagating interface. This phenomenon causes a significant reduction in the rate performance of the anodes and is detrimental to the development of fast-charging batteries. However, for the Na-Sn battery system, the residual stresses that develop near the interface are not stored, but are relieved by the generation of high-density dislocations in crystalline Sn. Direct-contact diffusion experiments show that these dislocations facilitate the preferential transport of Na and accelerate the Na diffusion into crystalline Sn at ultrafast rates via “dislocation-pipe diffusion”. Advanced analyses are performed to observe the evolution of atomic-scale structures while measuring the distribution and magnitude of residual stresses near the interface. In addition, multi-scale simulations that combined classical molecular dynamics and first-principles calculations are performed to explain the structural origins of the ultrafast diffusion rates observed in the Na-Sn system. These findings not only address the knowledge gaps regarding the relationship between pipe diffusion and the diffusivity of carrier ions but also provide guidelines for the appropriate selection of anode materials for use in fast-charging batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104944-sup-0001-SuppMat.pdf897.4 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. M. Thackeray, J. T. Vaughey, C. S. Johnson, A. J. Kropf, R. Benedek, L. M. L. Fransson, K. Edstrom, J. Power Sources 2003, 113, 124.
- 2M. R. Palacin, Chem. Soc. Rev. 2009, 38, 2565.
- 3J. B. Goodenough, Y. Kim, J. Power Sources 2011, 196, 6688.
- 4X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, Nano Lett. 2011, 11, 3312.
- 5V. L. Chevrier, G. Ceder, J. Electrochem. Soc. 2011, 158, A1011.
- 6M. J. Chon, V. A. Sethuraman, A. McCormick, V. Srinivasan, P. R. Guduru, Phys. Rev. Lett. 2011, 107, 045503.
- 7J. W. Wang, X. H. Liu, S. X. Mao, J. Y. Huang, Nano Lett. 2012, 12, 5897.
- 8M. N. Obrovac, V. L. Chevrier, Chem. Rev. 2014, 114, 11444.
- 9G. Ali, J. H. Lee, S. H. Oh, H. G. Jung, K. Y. Chung, Nano Energy 2017, 42, 106.
- 10Y. S. Choi, J. H. Park, J. P. Ahn, J. C. Lee, Chem. Mater. 2019, 31, 1696.
- 11C. C. Büttner, M. Zacharias, Appl. Phys. Lett. 2006, 89, 263106.
- 12B. Ding, H. Wu, Z. Xu, X. Li, H. Gao, Nano Energy 2017, 38, 486.
- 13Y. W. Byeon, Y. S. Choi, J. P. Ahn, J. C. Lee, J. Power Sources 2017, 343, 513.
- 14C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
- 15Q. Zhang, Y. Cui, E. Wang, Modell. Simul. Mater. Sci. Eng. 2013, 21, 074001.
- 16H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, S. Zhang, J. Mech. Phys. Solids 2014, 70, 349.
- 17Y. S. Choi, J. C. Lee, Electrochim. Acta 2019, 328, 135106.
- 18X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, Nat. Nanotechnol. 2012, 7, 749.
- 19Y. S. Choi, J. H. Park, J. P. Ahn, J. C. Lee, Sci. Rep. 2017, 7, 14028.
- 20S. W. Lee, M. T. McDowell, J. W. Choi, Y. Cui, Nano Lett. 2011, 11, 3034.
- 21X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang, T. Zhu, ACS Nano 2013, 7, 1495.
- 22Y. W. Byeon, J. P. Ahn, J. C. Lee, Small 2020, 16, 2004868.
- 23M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, Y. Cui, Adv. Mater. 2012, 24, 6034.
- 24Y. W. Byeon, Y. S. Choi, J. P. Ahn, J. C. Lee, ACS Appl. Mater. Interfaces 2018, 10, 41389.
- 25X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu, J. Y. Huang, Nano Lett. 2011, 11, 3991.
- 26X. Lu, E. R. Adkins, Y. He, L. Zhong, L. Luo, S. X. Mao, C. M. Wang, B. A. Korgel, Chem. Mater. 2016, 28, 1236.
- 27A. Nie, L. Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Li, C. Dong, R. Tao, F. Mashayek, H. T. Wang, U. Schwingenschlögl, ACS Nano 2013, 7, 6203.
- 28H. Asayesh-Ardakani, W. Yao, Y. Yuan, A. Nie, K. Amine, J. Lu, R. Shahbazian-Yassar, Small Methods 2017, 1, 1700202.
- 29K. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354.
- 30A. D. Drozdov, P. Sommer-Larsen, J. deClaville Christiansen, J. Appl. Phys. 2013, 114, 223514.
- 31M. Legros, G. Dehm, E. Arzt, T. J. Balk, Science 2008, 319, 1646.
- 32R. Tucker, A. Laskar, R. Thomson, J. Appl. Phys. 1963, 34, 445.
- 33G. R. Love, Acta Metall. 1964, 12, 731.
- 34J. Mimkes, Phys. Status Solidi B 1973, 58, K31.
- 35R. C. Picu, D. Zhang, Acta Mater. 2004, 52, 161.
- 36B. J. Heuser, D. R. Trinkle, N. Jalarvo, J. Serio, E. J. Schiavone, E. Mamontov, M. Tyagi, Phys. Rev. Lett. 2014, 113, 025504.
- 37J. H. Park, Y. S. Choi, Y. W. Byeon, J. P. Ahn, J. C. Lee, Nano Energy 2019, 65, 104041.
- 38A. B. Pandey, R. S. Mishra, A. G. Paradkar, Y. R. Mahajan, Acta Mater. 1997, 45, 1297.
- 39Y. Brechet, Y. Estrin, Acta Metall. Mater. 1995, 43, 955.
- 40C. Schwink, A. Nortmann, Mater. Sci. Eng., A 1997, 234–236, 1.
- 41R. D. Vengrenovich, Y. V. Gudyma, S. V. Yarema, Scr. Mater. 2002, 46, 363.
- 42L. Klinger, E. Rabkin, Interface Sci. 1998, 6, 197.
- 43P. Komninou, J. Stoemenos, G. Nouet, T. Karakostas, J. Cryst. Growth 1999, 203, 103.
- 44J. Nicolas, S. Assali, S. Mukherjee, A. Lotnyk, O. Moutanabbir, Cryst. Growth Des. 2020, 20, 3493.
- 45F. Qu, C. Li, Z. Wang, H. P. Strunk, J. Maier, ACS Appl. Mater. Interfaces 2014, 6, 8782.
- 46F. Qu, C. Li, Z. Wang, G. Richter, H. P. Strunk, Sci. Rep. 2015, 5, 10381.
- 47Y. S. Choi, Y. W. Byeon, J. H. Park, J. H. Seo, J. P. Ahn, J. C. Lee, ACS Appl. Mater. Interfaces 2018, 10, 560.
- 48J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao, Nano Lett. 2013, 13, 709.
- 49X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J. H. Cho, S. A. Dayeh, S. T. Picraux, J. P. Sullivan, Nano Lett. 2011, 11, 2251.
- 50J. H. Seo, C. Y. Chou, Y. H. Tsai, Y. Cho, T. Y. Seong, W. J. Lee, M. H. Cho, J. P. Ahn, G. S. Hwang, I. S. Choi, RSC Adv. 2015, 5, 17438.
- 51J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, Science 2010, 330, 1515.
- 52D. Turnbull, R. Hoffman, Acta Metall. 1954, 2, 419.
- 53M. A. Bhatia, I. Adlakha, G. Lu, K. N. Solanki, Scr. Mater. 2016, 123, 21.
- 54H. Jónsson, G. Mills, K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, (Eds: B. J. Berne, G. Ciccotti, D. F. Coker), World Scientific Publishing Company, River Edge, NJ 1998.
10.1142/9789812839664_0016 Google Scholar
- 55G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
- 56L. T. Canham, in Electronic Materials Information Service (EMIS), (Eds: K. V. Ravi, N. Hecking, W. Feng-Wei, et al.), INSPEC, London 1988, p. 455.
- 57V. Milman, M. C. Payne, V. Heine, R. J. Needs, J. S. Lin, M. H. Lee, Phys. Rev. Lett. 1993, 70, 2928.
- 58Y. S. Choi, Y. W. Byeon, J. P. Ahn, J. C. Lee, Nano Lett. 2017, 17, 679.
- 59Y. Kim, W. S. Ko, B. J. Lee, Comput. Mater. Sci. 2020, 185, 109953.
- 60S. Nosé, J. Chem. Phys. 1984, 81, 511.
- 61W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
- 62P. Johari, Y. Qi, V. B. Shenoy, Nano Lett. 2011, 11, 5494.
- 63J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 64N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993.