Engineered Platelet-Based Micro/Nanomotors for Cancer Therapy
Ting Li
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorTiantian Chen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorHuan Chen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorQi Wang
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorZhiyong Liu
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorLeyi Fang
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Mimi Wan
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Chun Mao
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jian Shen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorTing Li
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorTiantian Chen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorHuan Chen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorQi Wang
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorZhiyong Liu
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorLeyi Fang
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Mimi Wan
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Chun Mao
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jian Shen
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Engineered platelets (PLT) can bring new possibilities for diseases treatment due to the specific response for a variety of physiological disease environments. However, the deep penetration of engineered PLT in diseased tissues such as tumor is still an important challenge that restricts the therapeutic effect. Herein, the engineered PLT micromotor (PLT@PDA-DOX) is constructed by a universal self-polymerization modification method of dopamine, and the chemotherapeutic drug doxorubicin (DOX) is loaded by both π–π stacking interaction with polydopamine (PDA) and cellular endocytosis of PLT. The experimental results prove that PLT@PDA-DOX can target to tumor site by the specific binding of PLT with cancer cells, and then the secondary PLT-derived microparticles (PMP@PDA-DOX) are released with the activation of PLT@PDA-DOX by tumor microenvironment (TME). Besides, benefiting from the photothermal conversion capability of PDA, PLT@PDA-DOX micromotors and PMP@PDA-DOX nanomotors are driven by near-infrared light to realize deep penetration. And the PLT-based micro/nanomotors with propulsion capability possess good performance for tumor ablating in vitro and in vivo. In consideration of the operability, mildness, universality of this modification method and the good biocompatibility of PDA, this work may provide a general paradigm for the construction of engineered cells in disease treatment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202104912-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
smll202104912-sup-0002-MovieS1.mp41.9 MB | Supplementary Movie S1 |
smll202104912-sup-0003-MovieS2.mp44.3 MB | Supplementary Movie S2 |
smll202104912-sup-0004-MovieS3.mp45.6 MB | Supplementary Movie S3 |
smll202104912-sup-0005-MovieS4.mp42.1 MB | Supplementary Movie S4 |
smll202104912-sup-0006-MovieS5.mp4726.9 KB | Supplementary Movie S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Park, B. Andrade, Y. Seo, M. J. Kim, S. C. Zimmerman, H. Kong, Chem. Rev. 2018, 118, 1664; b) Z. Chen, Q. Hu, Z. Gu, Acc. Chem. Res. 2018, 51, 668; c) J. W. Yoo, D. J. Irvine, D. E. Discher, S. Mitragotri, Nat. Rev. Drug Discovery 2011, 10, 521.
- 2a) C. N. Morrell, A. A. Aggrey, L. M. Chapman, K. L. Modjeski, Blood 2014, 123, 2759; b) Z. Li, S. Hu, K. Cheng, J. Mater. Chem. B 2018, 6, 7354.
- 3a) J. Etulain, Platelets 2018, 29, 556; b) C. M. Hu, R. H. Fang, K. C. Wang, B. T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C. H. Wen, A. V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S. H. Patel, J. Zhu, W. Shi, F. M. Hofman, T. C. Chen, W. Gao, K. Zhang, S. Chien, L. Zhang, Nature 2015, 526, 118; c) C. Wang, W. Sun, Y. Ye, Q. Hu, H. N. Bomba, Z. Gu, Nat. Biomed. Eng. 2017, 1, 0011; d) X. Han, J. Chen, J. Chu, C. Liang, Q. Ma, Q. Fan, Z. Liu, C. Wang, J. Controlled Release 2019, 304, 233; e) P. Xu, H. Zuo, R. Zhou, F. Wang, X. Liu, J. Ouyang, B. Chen, Oncotarget 2017, 8, 58322; f) P. Xu, H. Zuo, B. Chen, R. Wang, A. Ahmed, Y. Hu, J. Ouyang, Sci. Rep. 2017, 7, 42632; g) L. Rao, L. L. Bu, L. Ma, W. Wang, H. Liu, D. Wan, J. F. Liu, A. Li, S. S. Guo, L. Zhang, W. F. Zhang, X. Z. Zhao, Z. J. Sun, W. Liu, Angew. Chem., Int. Ed. 2018, 57, 986.
- 4Y. Lu, Q. Hu, C. Jiang, Z. Gu, Curr. Opin. Biotechnol. 2019, 58, 81.
- 5J. Yang, S. Wang, P. Liu, L. Dai, B. Chen, J. Luan, J. Zhou, Oncotarget 2017, 8, 115748.
- 6a) M. Wan, Q. Wang, X. Li, B. Xu, D. Fang, T. Li, Y. Yu, L. Fang, Y. Wang, M. Wang, F. Wang, C. Mao, J. Shen, J. Wei, Angew. Chem., Int. Ed. 2020, 59, 14458; b) M. Wan, H. Chen, Z. Wang, Z. Liu, Y. Yu, L. Li, Z. Miao, X. Wang, Q. Wang, C. Mao, J. Shen, J. Wei, Adv. Sci. 2021, 8, 2002525; c) M. Wan, Q. Wang, R. Wang, R. Wu, T. Li, D. Fang, Y. Huang, Y. Yu, L. Fang, X. Wang, Y. Zhang, Z. Miao, B. Zhao, F. Wang, C. Mao, Q. Jiang, X. Xu, D. Shi, Sci. Adv. 2020, 6, eaaz9014.
- 7S. Tang, F. Zhang, H. Gong, F. Wei, J. Zhuang, E. Karshalev, B. Esteban Fernández de Ávila, C. Huang, Z. Zhou, Z. Li, L. Yin, H. Dong, R. Fang, X. Zhang, L. Zhang, J. Wang, Sci. Robot. 2020, 5, eaba6137.
- 8a) C. L. Pawlowski, W. Li, M. Sun, K. Ravichandran, D. Hickman, C. Kos, G. Kaur, A. S. Gupta, Biomaterials 2017, 128, 94; b) H. Nording, L. Baron, H. F. Langer, Atherosclerosis 2020, 307, 97.
- 9a) Y. Liu, K. Ai, L. Lu, Chem. Rev. 2014, 114, 5057; b) Y. H. Ding, M. Floren, W. Tan, Biosurf. Biotribol. 2016, 2, 121.
- 10H. Lee, S. Dellatore, W. Miller, P. Messersmith, Science 2007, 318, 426.
- 11Z. Dong, H. Gong, M. Gao, W. Zhu, X. Sun, L. Feng, T. Fu, Y. Li, Z. Liu, Theranostics 2016, 6, 1031.
- 12a) F. Monteil-Rivera, M. Phuong, M. Ye, A. Halasz, J. Hawari, Ind. Crops Prod. 2013, 41, 356; b) X. Xie, L. Liu, D. Lin, Y. Zhao, P. Qiu, Fuel 2019, 254, 11569.
- 13W. Chen, Y. Wang, M. Qin, X. Zhang, Z. Zhang, X. Sun, Z. Gu, ACS Nano 2018, 12, 5995.
- 14Z. Liu, V. Balasubramanian, C. Bhat, M. Vahermo, E. Makila, M. Kemell, F. Fontana, A. Janoniene, V. Petrikaite, J. Salonen, J. Yli-Kauhaluoma, J. Hirvonen, H. Zhang, H. A. Santos, Adv. Healthcare Mater. 2017, 6, 1601009.
- 15F. Liu, X. He, Z. Lei, L. Liu, J. Zhang, H. You, H. Zhang, Z. Wang, Adv. Healthcare Mater. 2015, 4, 559.
- 16X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, F. Li, Nat. Commun. 2016, 7, 10437.
- 17S. Yasami-Khiabani, A. Karkhaneh, M. A. Shokrgozar, A. Amanzadeh, M. Golkar, Biomater. Sci. 2020, 8, 4832.
- 18H. Ye, K. Wang, M. Wang, R. Liu, H. Song, N. Li, Q. Lu, W. Zhang, Y. Du, W. Yang, L. Zhong, Y. Wang, B. Yu, H. Wang, Q. Kan, H. Zhang, Y. Wang, Z. He, J. Sun, Biomaterials 2019, 206, 11.
- 19Z. Chen, T. Xia, Z. Zhang, S. Xie, T. Wang, X. Li, Chem. Eng. J. 2019, 375, 122109.
- 20H. D. Roberts-Dalton, A. Cocks, J. M. Falcon-Perez, E. J. Sayers, J. P. Webber, P. Watson, A. Clayton, A. T. Jones, Nanoscale 2017, 9, 13693.
- 21Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Nat. Nanotechnol. 2019, 14, 799.
- 22Y. Zeng, J. Liu, S. Yang, W. Liu, L. Xu, R. Wang, J. Mater. Chem. B 2018, 6, 1605.
- 23Z. Xie, T. Fan, J. An, W. Choi, Y. Duo, Y. Ge, B. Zhang, G. Nie, N. Xie, T. Zheng, Y. Chen, H. Zhang, J. S. Kim, Chem. Soc. Rev. 2020, 49, 8065.
- 24C. K. Schmidt, M. Medina-Sánchez, R. J. Edmondson, O. G. Schmidt, 2020, 11, 5618.
- 25H. Xu, M. Medina-Sánchez, W. Zhang, M. P. H. Seaton, D. R. Brison, R. J. Edmondson, S. S. Taylor, L. Nelson, K. Zeng, S. Bagley, C. Ribeiro, L. P. Restrepo, E. Lucena, C. K. Schmidt, O. G. Schmidt, Nanoscale 2020, 12, 20467.