Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride
Corresponding Author
Johannes E. Fröch
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorChi Li
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorYongliang Chen
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorMilos Toth
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorMehran Kianinia
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorCorresponding Author
Sejeong Kim
Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorIgor Aharonovich
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorCorresponding Author
Johannes E. Fröch
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorChi Li
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorYongliang Chen
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorMilos Toth
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorMehran Kianinia
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorCorresponding Author
Sejeong Kim
Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorIgor Aharonovich
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007 Australia
Search for more papers by this authorAbstract
Integration of solid-state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic-based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride (hBN) have emerged as a viable candidate over the last years. While the fundamental physical properties have been intensively studied, only a few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for a quantum emitter. In this work, the resonant tuning of a monolithic cavity integrated hBN quantum emitter is demonstrated through gas condensation at cryogenic temperature. In resonance, an emission enhancement and lifetime reduction are observed, with an estimate for the Purcell factor of ≈15.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1J. Wang, F. Sciarrino, A. Laing, M. G. Thompson, Nat. Photonics 2020, 14, 273.
- 2J.-H. Kim, S. Aghaeimeibodi, J. Carolan, D. Englund, E. Waks, Optica 2020, 7, 291.
- 3A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller, Nat. Photonics 2020, 14, 285.
- 4J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, A. Faraon, Nature 2020, 580, 201.
- 5M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev, M. D. Lukin, Nature 2020, 580, 60.
- 6A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, M. D. Lukin, Science 2016, 354, 847.
- 7S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, D. Englund, Phys. Rev. X 2015, 5, 031009.
- 8N. H. Wan, T.-J. Lu, K. C. Chen, M. P. Walsh, M. E. Trusheim, L. De Santis, E. A. Bersin, I. B. Harris, S. L. Mouradian, I. R. Christen, E. S. Bielejec, D. Englund, Nature 2020, 583, 226.
- 9R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl, Sci. Adv. 2020, 6, eabc8268.
- 10Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, A. Majumdar, Nano Lett. 2018, 18, 6404.
- 11J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, E. Waks, Nano Lett. 2017, 17, 7394.
- 12C. Errando-Herranz, E. Schöll, R. Picard, M. Laini, S. Gyger, A. W. Elshaari, A. Branny, U. Wennberg, S. Barbat, T. Renaud, M. Sartison, M. Brotons-Gisbert, C. Bonato, B. D. Gerardot, V. Zwiller, K. D. Jöns, ACS Photonics 2021, 8, 1069.
- 13A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, K. D. Jöns, Nat. Commun. 2017, 8, 379.
- 14S. Gyger, J. Zichi, L. Schweickert, A. W. Elshaari, S. Steinhauer, S. F. Covre da Silva, A. Rastelli, V. Zwiller, K. D. Jöns, C. Errando-Herranz, Nat. Commun. 2021, 12, 1408.
- 15A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, R. G. Beausoleil, Nat. Photonics 2011, 5, 301.
- 16D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, Phys. Rev. Lett. 2005, 95, 013904.
- 17D. O. Bracher, X. Zhang, E. L. Hu, Proc. Natl. Acad. Sci. USA 2017, 114, 4060.
- 18N. Mendelson, D. Chugh, J. R. Reimers, T. S. Cheng, A. Gottscholl, H. Long, C. J. Mellor, A. Zettl, V. Dyakonov, P. H. Beton, S. V. Novikov, C. Jagadish, H. H. Tan, M. J. Ford, M. Toth, C. Bradac, I. Aharonovich, Nat. Mater. 2021, 20, 321.
- 19A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, V. Dyakonov, Nat. Mater. 2020, 19, 540.
- 20N. Chejanovsky, A. Mukherjee, J. Geng, Y.-C. Chen, Y. Kim, A. Denisenko, A. Finkler, T. Taniguchi, K. Watanabe, D. B. R. Dasari, P. Auburger, A. Gali, J. H. Smet, J. Wrachtrup, Nat. Mater. 2021, 20, 1079.
- 21A. L. Exarhos, D. A. Hopper, R. N. Patel, M. W. Doherty, L. C. Bassett, Nat. Commun. 2019, 10, 222.
- 22P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. H. Chong, I. J. Luxmoore, Nano Lett. 2020, 20, 4256.
- 23C. Fournier, A. Plaud, S. Roux, A. Pierret, M. Rosticher, K. Watanabe, T. Taniguchi, S. Buil, X. Quélin, J. Barjon, J.-P. Hermier, A. Delteil, Nat. Commun. 2021, 12, 3779.
- 24K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, A. N. Vamivakas, Optica 2019, 6, 542.
- 25D. Yim, M. Yu, G. Noh, J. Lee, H. Seo, ACS Appl. Mater. Interfaces 2020, 12, 36362.
- 26S. A. Breitweiser, A. L. Exarhos, R. N. Patel, J. Saouaf, B. Porat, D. A. Hopper, L. C. Bassett, ACS Photonics 2020, 7, 288.
- 27N. V. Proscia, H. Jayakumar, X. Ge, G. Lopez-Morales, Z. Shotan, W. Zhou, C. A. Meriles, V. M. Menon, Nanophotonics 2020, 9, 2937.
- 28J. E. Fröch, S. Kim, N. Mendelson, M. Kianinia, M. Toth, I. Aharonovich, ACS Nano 2020, 14, 7085.
- 29T. Vogl, R. Lecamwasam, B. C. Buchler, Y. Lu, P. K. Lam, ACS Photonics 2019, 6, 1955.
- 30S. Häußler, G. Bayer, R. Waltrich, N. Mendelson, C. Li, D. Hunger, I. Aharonovich, A. Kubanek, Adv. Opt. Mater. 2021, 9, 2002218.
- 31A. W. Elshaari, A. Skalli, S. Gyger, M. Nurizzo, L. Schweickert, I. Esmaeil Zadeh, M. Svedendahl, S. Steinhauer, V. Zwiller, Adv. Quantum Technol. 2021, 4, 2100032.
- 32C. Li, J. E. Fröch, M. Nonahal, T. N. Tran, M. Toth, S. Kim, I. Aharonovich, ACS Photonics 2021, 8, 2966.
- 33J. E. Fröch, L. P. Spencer, M. Kianinia, D. D. Totonjian, M. Nguyen, A. Gottscholl, V. Dyakonov, M. Toth, S. Kim, I. Aharonovich, Nano Lett. 2021, 21, 6549.
- 34X. Li, R. A. Scully, K. Shayan, Y. Luo, S. Strauf, ACS Nano 2019, 13, 6992.
- 35N. V. Proscia, R. J. Collison, C. A. Meriles, V. M. Menon, Nanophotonics 2019, 8, 2057.
- 36M. Nguyen, S. Kim, T. T. Tran, Z.-Q. Xu, M. Kianinia, M. Toth, I. Aharonovich, Nanoscale 2018, 10, 2267.
- 37K.-Y. Jeong, S. W. Lee, J.-H. Choi, J.-P. So, H.-G. Park, Nanomaterials 2020, 10, 1663.
- 38N. P. Blascetta, M. Liebel, X. Lu, T. Taniguchi, K. Watanabe, D. K. Efetov, N. F. van Hulst, Nano Lett. 2020, 20, 1992.
- 39X. Gao, B. Jiang, A. E. L. Allcca, K. Shen, M. A. Sadi, A. B. Solanki, P. Ju, Z. Xu, P. Upadhyaya, Y. P. Chen, S. A. Bhave, T. Li, Nano Letters 2021, 21, 7708.
- 40G. Noh, D. Choi, J.-H. Kim, D.-G. Im, Y.-H. Kim, H. Seo, J. Lee, Nano Lett. 2018, 18, 4710.
- 41N. Mendelson, Z.-Q. Xu, T. T. Tran, M. Kianinia, J. Scott, C. Bradac, I. Aharonovich, M. Toth, ACS Nano 2019, 13, 3132.
- 42S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, I. Aharonovich, Nat. Commun. 2018, 9, 2623.
- 43J. E. Fröch, Y. Hwang, S. Kim, I. Aharonovich, M. Toth, Adv. Opt. Mater. 2019, 7, 1801344.
- 44S. Grenadier, J. Li, J. Lin, H. Jiang, J. Vac. Sci. Technol., A 2013, 31, 061517.
- 45R. Khelifa, P. Back, N. Flöry, S. Nashashibi, K. Malchow, T. Taniguchi, K. Watanabe, A. Jain, L. Novotny, Nano Lett. 2020, 20, 6155.
- 46T. Ren, P. Song, J. Chen, K. P. Loh, ACS Photonics 2018, 5, 353.
- 47G. Hu, J. Shen, C.-W. Qiu, A. Alù, S. Dai, Adv. Opt. Mater. 2020, 8, 1901393.
- 48J. S. Ginsberg, M. M. Jadidi, J. Zhang, C. Y. Chen, S. H. Chae, G. N. Patwardhan, L. Xian, N. Tancogne-Dejean, K. Watanabe, T. Taniguchi, J. Hone, A. Rubio, A. L. Gaeta, arXiv e-prints 2021, arXiv:2107.11959.
- 49A. A. Popkova, I. M. Antropov, J. E. Fröch, S. Kim, I. Aharonovich, V. O. Bessonov, A. S. Solntsev, A. A. Fedyanin, ACS Photonics 2021, 8, 824.
- 50J. Zhang, B. Tan, X. Zhang, F. Gao, Y. Hu, L. Wang, X. Duan, Z. Yang, P. Hu, Adv. Mater. 2021, 33, 2000769.
- 51T.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H. S. P. Wong, S. Pan, R. Li, T.-A. Chao, W.-C. Chueh, Y. Zhang, Q. Fu, B. I. Yakobson, W.-H. Chang, L.-J. Li, Nature 2020, 579, 219.
- 52J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J.-H. Park, B. G. Shin, H. Ko, S. H. Lee, Y.-M. Kim, Y. H. Lee, K. K. Kim, S. M. Kim, Science 2018, 362, 817.
- 53S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, D. G. Deppe, Appl. Phys. Lett. 2005, 87, 141105.
- 54D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, Nano Lett. 2010, 10, 3922.
- 55H. Choi, M. Heuck, D. Englund, Phys. Rev. Lett. 2017, 118, 223605.
- 56J. Zhou, J. Zheng, Z. Fang, P. Xu, A. Majumdar, Opt. Express 2019, 27, 30692.
- 57S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. Green, S. M. Weiss, Sci. Adv. 2018, 4, eaat2355.
- 58S. Häußler, G. Bayer, R. Waltrich, N. Mendelson, C. Li, D. Hunger, I. Aharonovich, A. Kubanek, Adv. Optical Mater. 2021, 9, 2002218.
- 59T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, I. Aharonovich, Nano Lett. 2017, 17, 2634.
- 60J. L. Zhang, S. Sun, M. J. Burek, C. Dory, Y.-K. Tzeng, K. A. Fischer, Y. Kelaita, K. G. Lagoudakis, M. Radulaski, Z.-X. Shen, N. A. Melosh, S. Chu, M. Lončar, J. Vučković, Nano Lett. 2018, 18, 1360.
- 61D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, J. Vučković, Nat. Photonics 2020, 14, 330.