Lightweight, Thermally Conductive Liquid Metal Elastomer Composite with Independently Controllable Thermal Conductivity and Density
Ethan J. Krings
Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorHaipeng Zhang
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorSuchit Sarin
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorJeffery E. Shield
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorSangjin Ryu
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorCorresponding Author
Eric J. Markvicka
Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Department of Electrical & Computer Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
E-mail: [email protected]
Search for more papers by this authorEthan J. Krings
Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorHaipeng Zhang
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorSuchit Sarin
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorJeffery E. Shield
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorSangjin Ryu
Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Search for more papers by this authorCorresponding Author
Eric J. Markvicka
Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
Department of Electrical & Computer Engineering, University of Nebraska–Lincoln, Lincoln, NE, 68588 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Lightweight and elastically deformable soft materials that are thermally conductive are critical for emerging applications in wearable computing, soft robotics, and thermoregulatory garments. To overcome the fundamental heat transport limitations in soft materials, room temperature liquid metal (LM) has been dispersed in elastomer that results in soft and deformable materials with unprecedented thermal conductivity. However, the high density of LMs (>6 g cm−3) and the typically high loading (⩾85 wt%) required to achieve the desired properties contribute to the high density of these elastomer composites, which can be problematic for large-area, weight-sensitive applications. Here, the relationship between the properties of the LM filler and elastomer composite is systematically studied. Experiments reveal that a multiphase LM inclusion with a low-density phase can achieve independent control of the density and thermal conductivity of the elastomer composite. Quantitative design maps of composite density and thermal conductivity are constructed to rationally guide the selection of filler properties and material composition. This new multiphase material architecture provides a method to fine-tune material composition to independently control material and functional properties of soft materials for large-area and weight-sensitive applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202104762-sup-0001-SuppMat.pdf27.5 MB | Supporting Information |
smll202104762-sup-0002-VideoS1.mp439.2 MB | Supplemental Video 1 |
smll202104762-sup-0003-VideoS2.mp439.1 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. W. Style, R. Tutika, J. Y. Kim, M. D. Bartlett, Adv. Funct. Mater. 2021, 31, 2005804.
- 2N. Kazem, T. Hellebrekers, C. Majidi, Adv. Mater. 2017, 29, 1605985.
- 3M. D. Dickey, Adv. Mater. 2017, 29, 1606425.
- 4M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, Adv. Funct. Mater. 2008, 18, 1097.
- 5R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, Angew. Chem., Int. Ed. 2008, 47, 142.
- 6T. Liu, P. Sen, C.-J. Kim, J. Microelectromech. Syst. 2011, 21, 443.
- 7L. Ren, X. Xu, Y. Du, K. Kalantar-Zadeh, S. X. Dou, Mater. Today 2020, 34, 92.
- 8S. H. Jeong, S. Chen, J. Huo, E. K. Gamstedt, J. Liu, S.-L. Zhang, Z.-B. Zhang, K. Hjort, Z. Wu, Sci. Rep. 2015, 5, 18257.
- 9M. D. Bartlett, N. Kazem, M. J. Powell-Palm, X. Huang, W. Sun, J. A. Malen, C. Majidi, Proc. Natl. Acad. Sci. USA 2017, 114, 2143.
- 10R. Tutika, S. H. Zhou, R. E. Napolitano, M. D. Bartlett, Adv. Funct. Mater. 2018, 28, 1804336.
- 11M. I. Ralphs, N. Kemme, P. B. Vartak, E. Joseph, S. Tipnis, S. Turnage, K. N. Solanki, R. Y. Wang, K. Rykaczewski, ACS Appl. Mater. Interfaces 2018, 10, 2083.
- 12M. H. Malakooti, N. Kazem, J. Yan, C. Pan, E. J. Markvicka, K. Matyjaszewski, C. Majidi, Adv. Funct. Mater. 2019, 29, 1906098.
- 13M. J. Ford, C. P. Ambulo, T. A. Kent, E. J. Markvicka, C. Pan, J. Malen, T. H. Ware, C. Majidi, Proc. Natl. Acad. Sci. USA 2019, 116, 21438.
- 14H. Bark, M. W. M. Tan, G. Thangavel, P. S. Lee, Adv. Energy Mater. 2021, 2101387.
- 15A. T. Haque, R. Tutika, R. L. Byrum, M. D. Bartlett, Adv. Funct. Mater. 2020, 30, 2000832.
- 16M. D. Bartlett, A. Fassler, N. Kazem, E. J. Markvicka, P. Mandal, C. Majidi, Adv. Mater. 2016, 28, 3726.
- 17A. Koh, J. Sietins, G. Slipher, R. Mrozek, J. Mater. Res. 2018, 33, 2443.
- 18R. Tutika, S. Kmiec, A. T. Haque, S. W. Martin, M. D. Bartlett, ACS Appl. Mater. Interfaces 2019, 11, 17873.
- 19C. Pan, E. J. Markvicka, M. H. Malakooti, J. Yan, L. Hu, K. Matyjaszewski, C. Majidi, Adv. Mater. 2019, 31, 1900663.
- 20C. Chiew, M. H. Malakooti, Compos. Sci. Technol. 2021, 208, 108752.
- 21J. Yang, D. Tang, J. Ao, T. Ghosh, T. V. Neumann, D. Zhang, E. Piskarev, T. Yu, V. K. Truong, K. Xie, Y.-C. Lai, Y. Li, M. D. Dickey, Adv. Funct. Mater. 2020, 30, 2002611.
- 22E. J. Markvicka, M. D. Bartlett, X. Huang, C. Majidi, Nat. Mater. 2018, 17, 618.
- 23E. J. Markvicka, R. Tutika, M. D. Bartlett, C. Majidi, Adv. Funct. Mater. 2019, 29, 1900160.
- 24A. Fassler, C. Majidi, Adv. Mater. 2015, 27, 1928.
- 25J. Wang, G. Cai, S. Li, D. Gao, J. Xiong, P. S. Lee, Adv. Mater. 2018, 30, 1706157.
- 26J. W. Boley, E. L. White, R. K. Kramer, Adv. Mater. 2015, 27, 2355.
- 27M. G. Mohammed, R. Kramer, Adv. Mater. 2017, 29, 1604965.
- 28Y. Lin, C. Cooper, M. Wang, J. J. Adams, J. Genzer, M. D. Dickey, Small 2015, 11, 6397.
- 29C. J. Thrasher, Z. J. Farrell, N. J. Morris, C. L. Willey, C. E. Tabor, Adv. Mater. 2019, 31, 1903864.
- 30S. Liu, M. C. Yuen, E. L. White, J. W. Boley, B. Deng, G. J. Cheng, R. Kramer-Bottiglio, ACS Appl. Mater. Interfaces 2018, 10, 28232.
- 31M. D. Bartlett, M. D. Dickey, C. Majidi, NPG Asia Mater. 2019, 11, 21.
- 32R. Tutika, A. T. Haque, M. D. Bartlett, Commun. Mater. 2021, 2, 64.
- 33A. T. Haque, R. Tutika, M. Gao, A. Martinez, J. Mills, J. A. Clement, J. Gao, M. Tabrizi, M. R. Shankar, Q. Pei, M. D. Bartlett, Multifunct. Mater. 2020, 3, 044001.
- 34S. Liu, D. S. Shah, R. Kramer-Bottiglio, Nat. Mater. 2021, 20, 851.
- 35T. V. Neumann, E. G. Facchine, B. Leonardo, S. Khan, M. D. Dickey, Soft Matter 2020, 16, 6608.
- 36Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, Z. Zheng, Nat. Mater. 2021, 20, 859.
- 37G. Bo, H. Yu, L. Ren, N. Cheng, H. Feng, X. Xu, S. X. Dou, H. Wang, Y. Du, ACS Appl. Nano Mater. 2021, 4, 550.
- 38H. Yu, W. Zhao, L. Ren, H. Wang, P. Guo, X. Yang, Q. Ye, D. Shchukin, Y. Du, S. Dou, H. Wang, Adv. Mater. 2020, 32, 2001571.
- 39F. Krisnadi, L. L. Nguyen, J. Ma, M. R. Kulkarni, N. Mathews, M. D. Dickey, Adv. Mater. 2020, 32, 2001642.
- 40W. Kong, Z. Wang, M. Wang, K. C. Manning, A. Uppal, M. D. Green, R. Y. Wang, K. Rykaczewski, Adv. Mater. 2019, 31, 1904309.
- 41J. Tang, X. Zhao, J. Li, R. Guo, Y. Zhou, J. Liu, ACS Appl. Mater. Interfaces 2017, 9, 35977.
- 42M. Ralphs, W. Kong, R. Y. Wang, K. Rykaczewski, Adv. Mater. Interfaces 2019, 6, 1801857.
- 43C. Zeng, J. Shen, J. Zhang, Diamond Relat. Mater. 2021, 112, 108230.
- 44S. Wei, Z. Yu, L. Zhou, J. Guo, J. Mater. Sci.: Mater. Electron. 2019, 30, 7194.
- 45W. Kong, Z. Wang, N. Casey, M. M. Korah, A. Uppal, M. D. Green, K. Rykaczewski, R. Y. Wang, Adv. Mater. Interfaces 2021, 8, 2100069.
- 46Z. Lin, H. Liu, Q. Li, H. Liu, S. Chu, Y. Yang, G. Chu, Appl. Phys. A 2018, 124, 368.
- 47S. Ki, J. Shim, S. Oh, E. Koh, D. Seo, S. Ryu, J. Kim, Y. Nam, Int. J. Heat Mass Transfer 2021, 170, 121012.
- 48X. Ge, J. Zhang, G. Zhang, W. Liang, J. Lu, J. Ge, ACS Appl. Nano Mater. 2020, 3, 3494.
- 49L. Han, L. Huiqiang, L. Zuoye, C. Sheng, Rare Metal Mater. Eng. 2018, 47, 2668.
10.1016/S1875-5372(18)30207-8 Google Scholar
- 50U. Daalkhaijav, O. D. Yirmibesoglu, S. Walker, Y. Mengüç, Adv. Mater. Technol. 2018, 3, 1700351.
- 51C. Wang, Y. Gong, B. V. Cunning, S. Lee, Q. Le, S. R. Joshi, O. Buyukcakir, H. Zhang, W. K. Seong, M. Huang, M. Wang, J. Lee, G.-H. Kim, R. S. Ruoff, Sci. Adv. 2021, 7, eabe3767.
- 52L. Ren, S. Sun, G. Casillas-Garcia, M. Nancarrow, G. Peleckis, M. Turdy, K. Du, X. Xu, W. Li, L. Jiang, S. X. Dou, Y. Du, Adv. Mater. 2018, 30, 1802595.
- 53F. Carle, K. Bai, J. Casara, K. Vanderlick, E. Brown, Phys. Rev. Fluids 2017, 2, 013301.
- 54I. A. de Castro, A. F. Chrimes, A. Zavabeti, K. J. Berean, B. J. Carey, J. Zhuang, Y. Du, S. X. Dou, K. Suzuki, R. A. Shanks, R. Nixon-Luke, G. Bryant, K. Khoshmanesh, K. Kalantar-Zadeh, T. Daeneke, Nano Lett. 2017, 17, 7831.
- 55L. Hu, H. Wang, X. Wang, X. Liu, J. Guo, J. Liu, ACS Appl. Mater. Interfaces 2019, 11, 8685.
- 56Y.-G. Park, H. Min, H. Kim, A. Zhexembekova, C. Y. Lee, J.-U. Park, Nano Lett. 2019, 19, 4866.
- 57L. Ren, N. Cheng, X. Man, D. Qi, Y. Liu, G. Xu, D. Cui, N. Liu, J. Zhong, G. Peleckis, X. Xu, S. X. Dou, Y. Du, Adv. Mater. 2021, 33, 2008024.
- 58H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou, Z. Sun, W. Rao, ACS Appl. Mater. Interfaces 2020, 12, 14125.
- 59B. Yuan, C. Zhao, X. Sun, J. Liu, Adv. Funct. Mater. 2020, 30, 1910709.
- 60T. Lu, E. J. Markvicka, Y. Jin, C. Majidi, ACS Appl. Mater. Interfaces 2017, 9, 22055.
- 61R. Tutika, S. Kmiec, A. B. M. T. Haque, S. W. Martin, M. D. Bartlett, ACS Appl. Mater. Interfaces 2019, 11, 17873.
- 62J. N. Lee, C. Park, G. M. Whitesides, Anal. Chem. 2003, 75, 6544.
- 63Y. Nagasaka, A. Nagashima, J. Phys. E: Sci. Instrum. 1981, 14, 1435.
- 64M. D. Dickey, ACS Appl. Mater. Interfaces 2014, 6, 18369.
- 65D. A. G. Bruggeman, Ann. Phys. 1935, 416, 636.
10.1002/andp.19354160705 Google Scholar
- 66J. Liang, F. Li, Polym. Test. 2006, 25, 527.
- 67S. Vlassov, S. Oras, M. Timusk, V. Zadin, I. Sosnin, R. Lõhmus, L. M. Dorogin, ChemRxiv 2020, https://doi.org/10.26434/chemrxiv.13342208.v1.
- 68S. Yu, M. Kaviany, J. Chem. Phys. 2014, 140, 064303.