In Situ Electrochemical Activation Derived LixMoOy Nanorods as the Multifunctional Interlayer for Fast Kinetics Li-S batteries
Tengyu Li
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorYanan Li
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorJinlin Yang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100083 P. R. China
Search for more papers by this authorYirui Deng
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorMengwei Wu
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorQi Wang
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Ruiping Liu
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ben Ge
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorXiaokun Xie
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorTengyu Li
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorYanan Li
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorJinlin Yang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100083 P. R. China
Search for more papers by this authorYirui Deng
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorMengwei Wu
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorQi Wang
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Ruiping Liu
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ben Ge
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorXiaokun Xie
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Li-S batteries (LSBs) have attracted worldwide attention owing to their characteristics of high theoretical energy density and low cost. However, the commercial promotion of LSBs is hindered by the irreversible capacity decay and short cycling life caused by the shuttle effect of lithium-polysulfides (LiPSs). Herein, a hybrid interlayer consisting of MoO3, conductive Ni foam, and Super P is prepared to prevent the shuttle effect and catalyze the LiPSs conversion. MoO3 with a reversible lithiation/delithiation behavior between Li0.042MoO3 and Li2MoO4 within 1.7–2.8 V versus Li/Li+ combines the Li+ insertion and LiPSs immobilization and efficiently improve the LSBs redox kinetics. Benefiting from the reversible Li+ insertion/extraction in lithium molybdate (LixMoOy) and the highly conductive Ni foam substrate, the sulfur cathode coupled with such electrochemical activation derived catalytic interlayer exhibits a high initial discharge capacity of 1100.1 mAh g−1 at a current density of 1 C with a low decay rate of 0.09% cycle−1. Good capacity retention can still be obtained even the areal sulfur loading is increased to 13.28 mg cm−2.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104613-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Li, X. T. Guo, S. T. Zhang, H. Pang, Rare Met. 2021, 40, 417.
- 2F. Li, J. He, J. D. Liu, M. G. Wu, Y. Y. Hou, H. P. Wang, S. H. Qi, Q. H. Liu, J. W. Hu, J. M. Ma, Angew. Chem., Int. Ed. 2021, 60, 6600.
- 3J. D. Huang, J. D. Liu, J. He, M. G. Wu, S. H. Qi, H. P. Wang, F. Li, J. M. Ma, Angew. Chem., Int. Ed. 2021, 60, 20717.
- 4X. X. Gu, Z. G. Yang, S. Qiao, C. B. Shao, X. L. Ren, J. J. Yang, Rare Met. 2021, 40, 529.
- 5X. R. Han, X. T. Guo, M. J. Xu, H. Pang, Y. W. Ma, Rare Met. 2020, 39, 1099.
- 6T. Y. Lei, Y. M. Xie, X. F. Wang, S. Y. Miao, J. Xiong, C. L. Yan, Small 2017, 13, 1701013.
- 7J. L. Qin, H. J. Peng, J. Q. Huang, X. Q. Zhang, L. Kong, J. Xie, M. Zhao, R. P. Liu, H. Y. Zhao, Q. Zhang, Small Methods 2018, 2, 1800100.
- 8Y. Z. Zuo, Y. J. Zhu, R. C. Wan, W. M. Su, Y. Fan, R. P. Liu, Y. F. Tang, Y. F. Chen, Chem. Eng. J. 2021, 415, 129053.
- 9X. L. Wang, G. R. Li, M. J. Li, R. P. Liu, H. B. Li, T. Y. Li, M. Z. Sun, Y. R. Deng, M. Feng, Z. W. Chen, J. Energy Chem. 2021, 53, 234.
- 10Q. H. Q. Xiao, G. R. Li, M. J. Li, R. P. Liu, H. B. Li, P. F. Ren, Y. Dong, M. Feng, Z. W. Chen, J. Energy Chem. 2020, 44, 61.
- 11L. Y. Tian, Z. Zhang, S. Liu, G. R. Li, X. P. Gao, Energy Environ. Mater. 2021, https://doi.org/10.1002/eem2.12215.
- 12B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu, M. X. Wang, L. S. Fan, N. Q. Zhang, Chin. Chem. Lett. 2021, 32, 2249.
- 13G. B. Wen, S. Rehman, T. G. Tranter, D. Ghosh, Z. W. Chen, J. T. Gostick, M. A. Pope, Chem. Mater. 2020, 32, 4518.
- 14L. L. Zhang, X. Chen, F. Wan, Z. Q. Niu, Y. J. Wang, Q. Zhang, J. Chen, ACS Nano 2018, 12, 9578.
- 15Y. Y. Yao, Y. W. Wu, N. Wang, M. Li, T. Hang, Mater. Chem. Phys. 2021, 258, 123923.
- 16C. L. Hu, L. S. Miao, Q. Yang, X. Z. Yu, L. Song, Y. Y. Zheng, C. C. Wang, L. Li, L. W. Zhu, X. B. Cao, H. L. Niu, Chem. Eng. J. 2021, 410, 128317.
- 17A. E. Baumann, J. R. Downing, D. A. Burns, M. C. Hersam, V. S. Thoi, ACS Appl. Mater. Interfaces 2020, 12, 37173.
- 18S. H. Moon, M. C. Kim, J. H. Choi, Y. S. Kim, H. Kim, K. W. Park, J. Alloys Compd. 2021, 857, 158236.
- 19J. S. Cai, Y. Z. Song, X. Chen, Z. T. Sun, Y. Y. Yi, J. Y. Sun, Q. Zhang, J. Mater. Chem. A 2020, 8, 1757.
- 20C. L. Song, G. H. Li, Y. Yang, X. J. Hong, S. Huang, Q. F. Zheng, L. P. Si, M. Zhang, Y. P. Cai, Chem. Eng. J. 2020, 381, 122701.
- 21J. D. Zhu, P. Zhu, C. Y. Yan, X. Dong, X. W. Zhang, Prog. Polym. Sci. 2019, 90, 118.
- 22G. Q. Ma, Z. Y. Wen, Q. S. Wang, C. Shen, P. Peng, J. Jin, X. W. Wu, J. Power Sources 2015, 273, 511.
- 23M. X. Tran, R. E. A. Ardhi, G. C. Liu, J. Y. Kim, J. K. Lee, Chem. Eng. J. 2020, 401, 126075.
- 24K. Zhang, F. R. Qin, J. Fang, Q. Li, M. Jia, Y. Q. Lai, Z. A. Zhang, J. Li, J. Solid State Electrochem. 2014, 18, 1025.
- 25Q. Wang, H. Q. Zhao, B. Y. Li, C. H. Yang, M. Y. Li, Y. N. Li, P. Han, M. M. Wu, T. Y. Li, R. P. Liu, Chin. Chem. Lett. 2021, 32, 1157.
- 26X. D. Hong, Y. Liu, Y. Li, X. Wang, J. W. Fu, X. L. Wang, Polymers 2020, 12, 331.
- 27L. N. Jin, Z. H. Fu, X. Y. Qian, B. B. Huang, F. Li, Y. H. Wang, X. Q. Shen, Microporous Mesoporous Mater. 2021, 316, 110927.
- 28C. W. Song, C. X. Peng, Z. H. Bian, F. Dong, H. Y. Xu, J. H. Yang, S. Y. Zheng, Energy Environ. Mater. 2019, 2, 216.
- 29X. D. Liu, Y. C. Lyu, Z. H. Zhang, H. Li, Y. S. Hu, Z. X. Wang, Y. M. Zhao, Q. Kuang, Y. Z. Dong, Z. Y. Liang, Q. H. Fan, L. Q. Chen, Nanoscale 2014, 6, 13660.
- 30R. H. Zhang, M. C. Wu, X. Z. Fan, H. R. Jiang, T. S. Zhao, J. Power Sources 2019, 436, 226840.
- 31P. H. Ji, B. Shang, Q. M. Peng, X. B. Hu, J. W. Wei, J. Power Sources 2018, 400, 572.
- 32Y. H. Cui, Y. Zhao, H. Chen, K. Y. Wei, S. Ni, Y. X. Cui, S. Q. Shi, Appl. Surf. Sci. 2018, 433, 1083.
- 33D. Tian, X. Q. Song, M. X. Wang, X. Wu, Y. Qiu, B. Guan, X. Z. Xu, L. S. Fan, N. Q. Zhang, K. N. Sun, Adv. Energy Mater. 2019, 9, 1901940.
- 34D. Cai, B. K. Liu, D. H. Zhu, D. Chen, M. J. Lu, J. M. Cao, Y. H. Wang, W. H. Huang, Y. Shao, H. R. Tu, W. Han, Adv. Energy Mater. 2020, 10, 1904273.
- 35D. W. Yang, Z. F. Liang, C. Q. Zhang, J. J. Biendicho, M. Botifoll, M. C. Spadaro, Q. L. Chen, M. Y. Li, A. Ramon, A. O. Moghaddam, J. Llorca, J. A. Wang, J. R. Morante, J. Arbiol, S. L. Chou, A. Cabot, Adv. Energy Mater. 2021, 2101250.
- 36F. Pei, L. L. Lin, A. Fu, S. G. Mo, D. H. Ou, X. L. Fang, N. F. Zheng, Joule 2018, 2, 323.
- 37N. Akhtar, X. G. Sun, M. Y. Akram, F. Zaman, W. K. Wang, A. B. Wang, L. Chen, H. Zhang, Y. P. Guan, Y. Q. Huang, J. Energy Chem. 2021, 52, 310.
- 38G. M. Zhou, H. Z. Tian, Y. Jin, X. Y. Tao, B. F. Liu, R. F. Zhang, Z. W. Seh, D. Zhuo, Y. Y. Liu, J. Sun, J. Zhao, C. X. Zu, D. S. Wu, Q. F. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840.
- 39L. Y. Luo, X. Y. Qin, J. X. Wu, G. M. Liang, Q. Li, M. Liu, F. Y. Kang, G. H. Chen, B. H. Li, J. Mater. Chem. A 2018, 6, 8612.
- 40J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.